Лучшие вопросы
Таймлайн
Чат
Перспективы

Интеграл Римана — Стилтьеса

Из Википедии, свободной энциклопедии

Remove ads

Интеграл Ри́мана — Сти́лтьеса[1] — обобщение определённого интеграла, предложенное в 1894 году Т. И. Стилтьесом. Вместо предела обычных интегральных сумм

рассматривается предел сумм вида

где интегрирующая функция есть функция с ограниченным изменением (ограниченной вариацией)[2]. Если непрерывно дифференцируема, то интеграл Стилтьеса выражается через интеграл Римана:

если последний существует.

Remove ads

Применения

Интеграл Римана — Стилтьеса имеет многочисленные применения в анализе. Например, всякий линейный непрерывный функционал в пространстве непрерывных на отрезке числовой оси функций может быть записан в форме интеграла Римана — Стилтьеса[3], всякая абсолютно монотонная при функция может быть представлена в виде суммы константы и интеграла Римана — Стилтьеса[4], всякая аналитическая функция в круге с неотрицательной вещественной частью может быть записана в виде суммы комплексного числа и интеграла Римана — Стилтьеса[5].

Интеграл Римана-Стилтьеса широко применяется в теории вероятности, позволяя обобщить интегрирование функции распределения для дискретных и непрерывных распределений, упрощая получение многих результатов

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads