Лучшие вопросы
Таймлайн
Чат
Перспективы
Квазигруппа (математика)
Из Википедии, свободной энциклопедии
Remove ads
Квазигруппа — магма, в которой всегда возможно деление. В отличие от группы, квазигруппа не обязана быть ассоциативной[1] и не обязана иметь нейтральный элемент. Любая ассоциативная квазигруппа с определенным на ней нейтральным элементом является группой.
Определения и свойства
Суммиров вкратце
Перспектива
Квазигруппой называют пару (Q, *) из непустого множества Q с бинарной операцией * : Q × Q → Q, удовлетворяющей следующему условию: для любых элементов a и b из Q найдутся единственные элементы x и y из Q, такие что
- a * x = b
- y * a = b
Решения этих уравнений иногда записывают так:
- x = a \ b
- y = b / a
Операции \ и / называют левым делением и правым делением.
Квазигруппу с единицей называют также лупой (от англ. loop — петля).
Если между элементами двух квазигрупп Q и R можно установить биекцию (то есть они равномощны как множества), говорят, что Q и R имеют одинаковый порядок. Если при этом существуют перестановки A, B, C, действующие на элементах этих квазигрупп, такие что
- (x, y) = [xA, yB]C
(здесь (,) и [ , ] — операции в Q и R соответственно), то такие квазигруппы называют изотопными.
Для любой квазигруппы существует лупа, которой она изотопна. Если же лупа изотопна группе, то эта лупа является группой. В более общем случае: если полугруппа изотопна лупе, то они изоморфны и обе изоморфны некоторой группе. Изотопия, в некотором[каком?] смысле, эквивалентна изоморфизму групп, но существуют квазигруппы изотопные, но не изоморфные группам.
Любой латинский квадрат является таблицей умножения (таблицей Кэли) квазигруппы.
Квазигруппа называется полностью антисимметричной, если выполняются ещё два свойства[2]:
- если для некоторых a и b из квазигруппы оказалось, что a * b = b * a, то a = b;
- если для некоторых a, b и c из квазигруппы оказалось, что ( a * b ) * c = ( a * c ) * b, то b = c.
В 2004 году М. Дамм представил примеры полностью антисимметричных квазигрупп, что явилось значительным математическим достижением XXI века[2].
Полностью антисимметричные квазигруппы (квазигруппы Дамма) используются в кодах, распознающих ошибку (алгоритм Дамма)[2].
Remove ads
Примеры
- Любая группа является также и квазигруппой, так как a * x = b x = a−1 * b, y * a = b y = b * a−1.
- Целые числа () с операцией вычитания (−) являются квазигруппой.
- Ненулевые рациональные числа (или вещественные — ) с операцией деления (÷) являются квазигруппой.
- Множество {±1, ±i, ±j, ±k}, где ii = jj = kk = +1 и все остальные произведения определяются так же, как в кватернионах, является квазигруппой с единицей (лупой).
- Любое векторное пространство над полем вещественных чисел относительно операции x * y = (x + y) / 2 образует структуру идемпотентной коммутативной квазигруппы.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads