Лучшие вопросы
Таймлайн
Чат
Перспективы

Классический радиус электрона

Из Википедии, свободной энциклопедии

Remove ads

Класси́ческий ра́диус электро́на, также известный как радиус Лоренца или длина томсоновского рассеяния, базируется на классической релятивистской модели электрона, в которой предполагается, что вся масса электрона имеет электромагнитную природу, то есть масса электрона, умноженная на квадрат скорости света, равна энергии создаваемого им электрического поля. При этом электрон представляется сферической частицей с определённым радиусом, поскольку при нулевом радиусе энергия созданного электроном поля была бы бесконечной.

= 2,8179403267(27) ⋅10-15 м,

где e и m0 есть электрический заряд и масса электрона, c — скорость света, а  — диэлектрическая постоянная.

Классический радиус электрона равен радиусу полой сферы, на которой равномерно распределён заряд, если этот заряд равен заряду электрона, а потенциальная энергия электростатического поля полностью эквивалентна половине массы электрона, умноженной на квадрат скорости света (без учета квантовых эффектов):

.
Remove ads

Дифференцирование

Классическая шкала длины радиуса электрона может быть мотивирована рассмотрением энергии, необходимой для сборки количества заряда в сферу заданного радиуса . Электростатический потенциал на расстоянии от заряда равен

.

Чтобы вывести дополнительное количество заряда из бесконечности, необходимо вложить в систему энергию которая равна

.

Если «предполагается», что сфера имеет постоянную плотность заряда , то

и .

Выполнение интегрирования для , начиная с нуля до конечного радиуса , приводит к выражению для суммарнаю энергии , необходимой для сборки полного заряда в однородную сферу радиуса :

.

Это называется электростатической собственной энергией объекта. Заряд теперь интерпретируется как заряд электрона ; энергия устанавливается равной релятивистской масс-энергии электрона ; числовой коэффициент 3/5 игнорируется как специфический для частного случая однородной плотности заряда. Затем радиус «определяется» как классический радиус электрона и мы приходим к выражению приведенному выше.

Дифференцирование не говорит, что это фактический радиус электрона. Оно только устанавливает пространственную связь между электростатической собственной энергией и масштабом массы-энергии электрона.

Remove ads

Связь с другими фундаментальными длинами

Суммиров вкратце
Перспектива

Сегодня классический радиус электрона рассматривается как классический предел для размеров электрона, которая используется при рассмотрении нерелятивистского рассеяния Томсона, а также в релятивистской формуле Клейна — Нишины. Классический радиус электрона является представителем тройки фундаментальных длин; две другие из этой тройки - боровский радиус () и комптоновская длина волны электрона

Учитывая постоянную тонкой структуры α, классический радиус электрона можно переписать в форме:

где  — приведённая комптоновская длина волны электрона. Через длину классического радиуса электрона можно выразить комптоновскую длину волны электрона

и боровский радиус:

Если рассматривать радиус протона 0,8768 фемтометра(CODATA-2006) ,то радиус электрона в 3.21 раза больше радиуса протона.

Отсюда радиус электрона равен: 2,814528 фемтометра (2017-02-04)

Существование постоянной однако, не означает, что это настоящий радиус электрона. На таких расстояниях действуют законы квантовой механики, в которой электрон рассматривается как точечная частица.

Remove ads

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads