Лучшие вопросы
Таймлайн
Чат
Перспективы

Конциклические точки

Из Википедии, свободной энциклопедии

Конциклические точки
Remove ads

Конциклические точки (или гомоциклические точки) — точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек[1].

Thumb
Пересекающиеся в центре срединные перпендикуляры, проведённые к хордам круга, соединяющим всевозможные пары трёх конциклических точек
Thumb
Четыре конциклические точки, являющиеся сторонами вписанного в окружность четырехугольника. На рис. показаны два равных угла
Remove ads

Серединные перпендикуляры

В общем случае центр O окружности, на которой лежат точки P и Q, должен быть таким, чтобы расстояния OP и OQ были равны . Поэтому точка O должна лежать на срединном перпендикуляре (или на медиатрисе) отрезка PQ[2]. Необходимым и достаточным условием того, чтобы n различных точек лежали на одной окружности является то, что n(n − 1)/2 медиатрис отрезков, имеющих своими концами любые пары из n точек, все одновременно пересекались в одной точке, а именно: в центре O.

Remove ads

Вписанные многоугольники

Суммиров вкратце
Перспектива

Треугольники

Вершины каждого треугольника лежат на окружности[3]. Окружность, проходящая через 3 вершины треугольника, называется описанной окружностью треугольника. Несколько других наборов точек, которые определяются из треугольника, также лежат на одной окружности, то есть являются конциклическими точками; см. Окружность Эйлера[4] и Окружность Лестера[5].

Радиус окружности, на которой находятся множество точек, по определению, есть радиус описанной окружности любого треугольника с вершинами в любых трёх из этих точек. Если попарные расстояния между любыми тремя из этих точек a, b и c, то радиус окружности равен

Уравнение описанной окружности для треугольника, и выражение для радиуса и координат центра окружности через декартовы координаты вершин приведены здесь.

Четырехугольники

Четырехугольник ABCD с вершинами, лежащими на одной окружности, называется вписанным; это бывает тогда и только тогда, когда (по теореме о вписанном угле окружности), что выполняется если и только если противоположные углы четырёхугольника дополняют друг друга до 180 градусов[6]. Вписанный четырёхугольник с последовательными сторонами a, b, c, d и полупериметром s = (a+b+c+d)/2 имеет радиус описанной окружности, равный[7][8]

Это выражение было получено индийским математиком Ватассери Парамешвара[англ.] в XV веке.

По теореме Птолемея, четырёхугольник, заданный попарными расстояниями между его четырьмя вершинами A, B, C и D соответственно, будет вписанным тогда и только тогда, когда произведение его диагоналей равно сумме произведений противоположных сторон:

Если две прямые, одна из которых содержит отрезок AC, а другая содержит отрезок BD, пересекаются в одной точке «Х», то эти четыре точки A, B, C, D являются конциклическими точками тогда и только тогда, когда[9]

Точка пересечения X может быть как внутри, так и вне описанного круга. Эта теорема известна как теорема о степени точки.

n-угольники

В общем случае n-угольник, все вершины которого лежат на одной окружности, называется вписанным многоугольником. Многоугольник является вписанным многоугольником, если и только если все серединные перпендикуляры его сторон пересекаются в одной точке[10].

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads