Лучшие вопросы
Таймлайн
Чат
Перспективы

Кривая постоянной ширины

плоская выпуклая кривая, длина ортогональной проекции которой на любую прямую постоянна Из Википедии, свободной энциклопедии

Кривая постоянной ширины
Remove ads

Крива́я постоя́нной ширины́  — плоская выпуклая кривая, длина ортогональной проекции (диаметр Фере) которой на любую прямую равна .

Thumb
Треугольник Рёло — кривая постоянной ширины. Стороны квадрата — опорные прямые: каждая сторона касается треугольника, но не пересекает его. Треугольник Рёло можно вращать, и при этом он всегда будет касаться каждой стороны квадрата; таким образом ширина треугольника (расстояние между двумя опорными прямыми) постоянна

Иными словами, кривой постоянной ширины называется плоская выпуклая кривая, расстояние между любыми двумя параллельными опорными прямыми которой постоянно и равно  — ширине кривой.

Remove ads

Связанные определения

  • Фигурой постоянной ширины называется фигура, граница которой является кривой постоянной ширины.

Примеры

Thumb
Многоугольники Рёло
Thumb
Гладкая кривая постоянной ширины, построенная на базе треугольника и составленная из фрагментов шести сопряжённых окружностей. Ширина w = a + bc +2y, где a, b, c – стороны треугольника (a, b > c, y > 0)

Фигурами постоянной ширины, в частности, являются круг и многоугольники Рёло (частный случай последних — треугольник Рёло). Многоугольники Рёло составлены из фрагментов окружностей и не являются гладкими кривыми. Из сопряжённых фрагментов окружностей можно построить и гладкую кривую постоянной ширины (рисунок справа), но дальнейшее увеличение гладкости кривой на этом пути невозможно.

Remove ads

Функциональное представление

Суммиров вкратце
Перспектива

В отличие от приведенных выше простейших примеров, кривые постоянной ширины могут не совпадать с окружностью ни на каком конечном отрезке и быть везде сколь угодно гладкими. В общем виде фигура постоянной ширины c опорной функцией задаётся параметрическими уравнениями[1]


при условиях:

  1. полученная кривая является выпуклой.

Согласно элементарной тригонометрии, первому условию удовлетворяет ряд Фурье следующего вида:

[2].

Если коэффициенты ряда убывают достаточно быстро, то результирующая кривая будет выпуклой (без самопересечений).

В частности, опорная функция порождает кривую постоянной ширины, для которой найдено неявное представление в виде уравнения для полинома 8-й степени[3]

Эта кривая в окрестности любой точки является аналитической функцией либо от x, либо от y и ни в какой окрестности не совпадает с окружностью.

Remove ads

Свойства

  • У кривой постоянной ширины длина равна (теорема Барбье).
  • Центры вписанной и описанной окружностей кривой постоянной ширины совпадают, а сумма их радиусов равна ширине кривой.
  • Фигура постоянной ширины может вращаться в квадрате со стороной , всё время касаясь каждой из сторон.
  • Среди всех фигур данной постоянной ширины треугольник Рёло имеет наименьшую площадь, а круг — наибольшую.
  • Любую плоскую фигуру диаметра можно накрыть фигурой постоянной ширины .
Remove ads

Применения

Remove ads

Вариации и обобщения

Thumb
Линзообразный Δ-двухугольник, вращающийся внутри равностороннего треугольника
  • Фигуры постоянной ширины можно определить как выпуклые фигуры, способные вращаться внутри квадрата, одновременно касаясь всех его сторон. Можно также рассматривать фигуры, способные вращаться, касаясь всех сторон некоторого -угольника, например, правильного -угольника. Такие фигуры называются роторами[7].
    • Например, двуугольник, образованный пересечением двух одинаковых кругов с углом при вершине, равным , является ротором равностороннего треугольника. Сверлом такой формы в принципе можно было бы сверлить треугольные отверстия без сглаженных углов.
    • Рассматривались фигуры вращающиеся внутри более общих фигур.[8]
Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads