Лучшие вопросы
Таймлайн
Чат
Перспективы

Минимальная поверхность Шварца

Из Википедии, свободной энциклопедии

Remove ads

Минимальные поверхности Шварца — это периодические минимальные поверхности, первоначально описанные Карлом Шварцем.

В 1880-х годах Шварц и его студент Е. Р. Неовиус описали периодические минимальные поверхности[1][2]. Им позднее дал названия Алан Шён в его фундаментальном отчёте, где он описал гироид и другие трижды периодические минимальные поверхности[3].

Поверхности генерировались с помощью симметрий: если дано решение задачи Плато для многоугольника, отражения поверхности относительно линий границы также даёт правильные минимальные поверхности, которые могут быть непрерывным образом соединены с исходным решением. Если минимальная поверхность встречает плоскость под прямыми углами, то зеркальное отражение относительно плоскости также может быть присоединено к поверхности. Следовательно, если дан подходящий начальный многоугольник, вписанный в единичную ячейку, периодическая поверхность может быть построена[4].

Поверхности Шварца имеют топологический род 3, минимальный род трижды периодических минимальных поверхностей[5].

Они рассматривались как модели для периодических наноструктур в блок-сополимерах, электростанических эквипотенциальных поверхностях в кристаллах[6] и гипотетических отрицательно искривлённых графитовых фазах[7].

Remove ads

Поверхность Шварца P («Primitive» = «Примитивная»)

Thumb
Поверхность Шварца P

Шён назвал эти поверхности «примитивными», поскольку они имеют два переплетённых конгруэнтных лабиринта, каждый из которых имеет форму раздутой трубчатой версии простой кубической решётки. В то время как стандартная поверхность P имеет кубическую симметрию, ячейки могут иметь форму любого прямоугольника, что даёт семейство минимальных поверхностей с одной и той же топологией[8].

Поверхность можно аппроксимировать явной поверхностью

[9].

Поверхность P рассматривалась для разработки прототипов тканевых каркасов с высоким отношением поверхности к объёму и высокой пористостью[10].

Remove ads

Поверхность Шварца D («Diamond» = «Алмаз»)

Суммиров вкратце
Перспектива
Thumb
Поверхность Шварца D

Шён назвал эту поверхность «алмазом», поскольку она имеет два переплетающихся конгруэнтных лабиринта, каждый из которых имеет форму раздутой полой версии алмазной структуры связи[англ.]. В литературе эта поверхность иногда называется поверхностью F.

Поверхность может быть аппроксимирована явной поверхностью

Точное выражение существует в терминах эллиптических интегралов, основанных на параметризации Вейерштрасса — Эннепера[11].

Remove ads

Поверхность Шварца H («Hexagonal» = «Шестиугольная»)

Thumb
Поверхность Шварца H

Поверхность Шварца H подобна катеноиду с треугольной границей, что позволяет заполнить всё пространство.

Поверхность Шварца CLP («Crossed layers of parallels» = «Скрещённые слои параллелей»)

Thumb
Поверхность Шварца CLP

Иллюстрации

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads