Лучшие вопросы
Таймлайн
Чат
Перспективы

Модифицированный потенциал Пёшль — Теллера

Из Википедии, свободной энциклопедии

Модифицированный потенциал Пёшль — Теллера
Remove ads

Модифицированный потенциал Пёшль — Теллера — функция потенциальной энергии элетростатического поля, предложенная физиками Гертой Пёшль и Эдвардом Теллером[1] как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе

Thumb
Форма модифицированного потенциала Пёшль-Теллера

Глубина потенциальной ямы обычно параметризуется в виде:

.

Решение уравнения Шрёдингера с потенциальной энергией в форме модифицированной ямы Пёшль — Теллера представляется при помощи функций Лежандра.

Remove ads

Уравнение Шрёдингера с модифицированным потенциалом Пёшль — Теллера

Суммиров вкратце
Перспектива

Стационарное уравнение Шрёдингера с модифицированным потенциалом Пёшль — Теллера имеет вид:

Если ввести обозначение , то оно примет вид:

Решение через гипергеометрические функции

После замены переменных

получим

Если подставить решение в виде

,

то уравнение приводится к гипергеометрическому виду

Обозначая

общее решение примет вид

В качестве фундаментальной системы решений исходного уравнения удобно выбрать чётное и нечётное решение, то есть собственные функции оператора чётности:

Чётное решение соответствует и

Нечётное решение соответствует и

Энергия связанных состояний

Для удобства обозначим , тогда энергия запишется как

Параметры гипергеометрических функций примут вид

Чтобы получить нормируемые функции необходимо исключить члены асимптотик неограниченные на бесконечности, для нечётных функций это условие примет вид

,

для чётных

Объединяя эти условия, получим уровни энергии:

Коэффициенты отражения и прохождения

Коэффициенты отражения и прохождения имеют вид:

где введено обозначение

При получим, что и

Таким образом, при модифицированный потенциал Пёшль — Теллера становится безотражательным.

Решение через функции Лежандра

Заменой уравнение Шрёдингера может быть сведено к уравнению

Решение этого уравнения может быть представлено через функции Лежандра

где .

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads