Лучшие вопросы
Таймлайн
Чат
Перспективы

Нормальная модальная логика

Из Википедии, свободной энциклопедии

Remove ads

Нормальная модальная логика — множество формул L, содержащее[1]:

  • Все пропозициональные тавтологии;
  • ;
  • .

и замкнутое относительно правил:

  • modus ponens: следует из правила ;
  • подстановки;
  • обобщения: следует из правила .[уточнить]

Наиболее компактную логику, удовлетворяющую указанным условиям, называют K. Большинство широко используемых в настоящее время модальных логик, имеющих значение для философии, например, S4 и S5 — К. И. Льюиса, являются нормальными и, следовательно, являются расширениями K. Однако ряд деонтических и эпистемических логик, например, являются ненормальными, часто потому, что в них отсутствует схема Крипке.

Каждая нормальная модальная логика является регулярной и, следовательно, классической.

Remove ads

Общие нормальные модальные логики

Суммиров вкратце
Перспектива

В следующей таблице перечислены несколько наиболее распространённых нормальных модальных систем. Условные обозначения относятся к таблице семантика Крипке § Общие схемы модальных аксиом. Условия фреймов для некоторых систем были упрощены: логики являются обоснованными и полными, относительно классов фреймов, указанных в таблице, но также могут соответствовать и более обширному классу фреймов.

Подробнее предпорядок, ...
Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads