Лучшие вопросы
Таймлайн
Чат
Перспективы

Определитель Грама

Из Википедии, свободной энциклопедии

Remove ads

Определителем Грама (грамианом) системы векторов в евклидовом пространстве называется определитель матрицы Грама этой системы:

Краткие факты Определитель Грама, Определяющая формула ...

где  — скалярное произведение векторов и .

Матрица Грама возникает из следующей задачи линейной алгебры:

Пусть в евклидовом пространстве система векторов порождает подпространство . Зная, чему равны скалярные произведения вектора из с каждым из этих векторов, найти коэффициенты разложения вектора по векторам .

Исходя из разложения

получается линейная система уравнений с матрицей Грама:

Эта задача однозначно разрешима тогда и только тогда, когда векторы линейно независимы. Поэтому обращение в ноль определителя Грама системы векторов — это критерий их линейной зависимости.

Remove ads

Геометрический смысл определителя Грама

Суммиров вкратце
Перспектива

Геометрический смысл определителя Грама раскрывается при решении следующей задачи:

Пусть в евклидовом пространстве система векторов порождает подпространство . Зная скалярные произведения вектора из с каждым из этих векторов, найти расстояние от до .

Минимум расстояний по всем векторам из достигается на ортогональной проекции вектора на . При этом , где вектор перпендикулярен всем векторам из , и расстояние от до равно модулю вектора . Для вектора решается задача о разложении (см. выше) по векторам , и решение получившейся системы выписывается по правилу Крамера:

где  — определитель Грама системы. Вектор равен:

и квадрат его модуля равен

Из этой формулы индукцией по получается следующее утверждение:

  • Определитель Грама системы векторов равен квадрату объёма -мерного параллелепипеда, натянутого на эти векторы. Отсюда видно, что в случае трёхмерного пространства определитель Грама трёх векторов равен квадрату их смешанного произведения.
Remove ads

См. также

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads