Лучшие вопросы
Таймлайн
Чат
Перспективы

Родриг, Олинд

французский математик, механик и экономист; социалист-утопист, последователь Сен-Симона Из Википедии, свободной энциклопедии

Родриг, Олинд
Remove ads

Бенжаме́н Оли́нд Родри́г  (фр. Benjamin Olinde Rodrigues;  6 октября 1795, Бордо — 17 декабря 1851, Париж) — французский математик, механик и экономист, последователь социалиста-утописта А. Сен-Симона[4].

Краткие факты Бенжамен Олинд Родриг, Имя при рождении ...
Remove ads

Биография

Суммиров вкратце
Перспектива

Родился 6 октября 1795 г. в Бордо, в зажиточной сефардской семье[5]. Окончил Высшую нормальную школу в Париже[4].

28 июня 1815 г. защитил в Парижском университете докторскую диссертацию по математике (важнейшие результаты её, включая формулу для многочленов Лежандра, известную ныне как формула Родрига, были опубликованы в статье «О притяжении сфероидов»[6] в 1816 г.)[7]. После защиты работал в Политехнической школе репетитором, затем (приобретя в результате брокерских операций на бирже значительное состояние) стал в 1823 г. директором ссудного банка[4][8].

В 1817 г. Родриг женился на Эфрази (Euphrasie), урождённой Викторине Дениз Мартен (Victorine Denise Marten); у них было четверо детей — два сына и две дочери[9].

В последние годы жизни графа Анри де Сен-Симона Родриг входил в число наиболее ревностных его учеников. После смерти Сен-Симона (скончавшегося 19 мая 1825 г. у Родрига на руках) последний собрал вместе всех учеников графа, которые решили не расставаться и продолжать его дело. Так возникло движение сенсимонистов, во главе которого первоначально — как ближайший ученик Сен-Симона — стоял Родриг, опубликовавший ряд работ по вопросам политики, экономики и социальных реформ[10]. В 1825—1826 гг. он (наряду с С.-А. Базаром) был редактором первого сенсимонистского журнала «Le Producteur»[11].

Однако 31 декабря 1829 г. Родриг передал руководство делами движения П. Анфантену и С.-А. Базару, принимавшими наибольшее участие в разработке доктрины сенсимонизма, а в феврале 1832 г. вообще ушёл из сенсимонистской общины (что неблагоприятно отразилось на её положении, поскольку именно Родриг ранее заправлял всеми её денежными делами). Разрыв был вызван принципиальными разногласиями с Анфантеном, который, будучи провозглашён «Верховным Отцом», фактически превратил движение в узкую религиозную секту и активно проповедовал весьма радикальные взгляды на отношения между полами (совершенно неприемлемые для Родрига, для которого брак с Эфрази был основой всей его жизни). Впрочем, расставшись с сенсимонистским движением, Родриг оставался верным социалистическим идеалам до самой смерти[12].

В 1840-е гг. Родриг активно выступал в печати в поддержку рабочего движения и за упразднение рабства; приветствовал Революцию 1848 года. Умер он в Париже 17 декабря 1851 г. и был похоронен на кладбище Пер-Лашез[13].

Remove ads

Научная деятельность

Суммиров вкратце
Перспектива

Основные работы Родрига относятся к механике, геометрии и теории чисел[4].

Исследования по геометрии

В 1815 г. Родриг доказал важную теорему теории поверхностейтеорему Родрига, по которой необходимым и достаточным условием того, что направление является главным, служит выполнение для дифференциала радиус-вектора точки поверхности в этом направлении условия

где  — вектор единичной нормали,  нормальная кривизна поверхности в рассматриваемом направлении[14][15] (приведённое условие сам Родриг записывал в координатной форме).

В 1816 г. Родриг в уже упоминавшейся статье «О притяжении сфероидов»[6] опубликовал полученную им для многочленов Лежандра формулу (формула Родрига), дающую явное выражение для этих многочленов[16] Данная формула для многочлена Лежандра степени   может быть записана[17] так:

Исследования по механике

Изучение принципа Лагранжа

В 1816 г. Родриг опубликовал заметку «О способе применения принципа наименьшего действия для вывода уравнений движения, отнесённых к независимым переменным»[18], посвящённую исследованию принципа наименьшего действия в формулировке Лагранжа. В ней Родриг впервые явно оговорил[19] асинхронный характер варьирования переменных в принципе Лагранжа. Проблему существования условного экстремума интеграла действия в форме Лагранжа Родриг свёл к задаче нахождения безусловного экстремума функционала, в котором подынтегральная функция записывается как сумма удвоенной кинетической энергии   механической системы и умноженного на неопределённый множитель Лагранжа   выражения    (где потенциальная энергия, — постоянная в интеграле энергии). Такое исследование Родриг провёл для случая системы свободных материальных точек и получил при этом уравнения движения системы; позднее Ф. А. Слудский распространил данное исследование на случай системы со стационарными связями[20].

Формула поворота Родрига

В 1840 г. Родриг в статье «О геометрических законах, управляющих перемещениями неизменяемой системы в пространстве, и об изменении координат, обусловленном этими перемещениями, рассматриваемыми независимо от причин, которые могут их вызывать»[21] доказал формулу поворота Родрига. Эта формула, которая приводится здесь в современной векторной записи, описывает изменение положения точки абсолютно твёрдого тела после его поворота на конечный угол вокруг неподвижной оси с единичным вектором  .  Если — взятый на оси поворота полюс,    и  — радиус-векторы начального и конечного положений точки, то формула поворота Родрига записывается[22] в виде:

где квадратные скобки обозначают операцию векторного умножения, а вектор конечного поворота, определяемый формулой

Формула   не может быть непосредственно использована для численных расчётов в случае, когда тело совершает[23] полуоборот). Если при движении твёрдого тела подобные повороты не исключаются, применяют[24] другой — менее компактный — вариант формулы поворота Родрига, в котором вместо вектора конечного поворота   фигурируют непосредственно угол   и единичный вектор  :

Параметры Родрига — Гамильтона

В той же работе 1840 года Родриг применил для описания изменения ориентации твёрдого тела набор из четырёх скалярных параметров, определяемых[25][26] следующим образом:

где  — направляющие косинусы оси поворота  (т.е. компоненты вектора )  в декартовой системе координат .  Данные параметры удовлетворяют условию

а компоненты вектора конечного поворота   выражаются через них[25] так:

Ныне эти параметры называют[27] параметрами Эйлера или параметрами Родрига — Гамильтона. Разнобой в терминологии объясняется так[28]: впервые данные параметры были введены Эйлером в 1770 г., но соответствующая работа Эйлера внимания математиков не привлекла; Родриг, переоткрывший их (о работе Эйлера он не знал) в 1840 г., уже умел — в отличие от Эйлера — вычислять значения этих параметров для суперпозиции двух поворотов вокруг различных осей; Гамильтон же в 1853 г. дал им чёткую интерпретацию в рамках разрабатывавшейся им начиная с 1843 года теории кватернионов (оказалось, что они представляют собой компоненты кватерниона поворота[29], а суперпозиции двух поворотов отвечает кватернионное произведение соответствующих кватернионов поворота).

При нахождении указанной суперпозиции полезным оказывается впервые доказанное[21] Родригом следующее утверждение (ныне известное[30] как теорема Родрига — Гамильтона):  три последовательных поворота вокруг трёх неподвижных прямых, проходящих через одну точку, на углы, равные соответственно удвоенным углам между плоскостями, образуемыми данными прямыми, возвращают тело в исходную конфигурацию.

Remove ads

Публикации

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads