Лучшие вопросы
Таймлайн
Чат
Перспективы

Перечисление графов

Из Википедии, свободной энциклопедии

Перечисление графов
Remove ads

Перечисление графов — категория задач перечислительной комбинаторики, в которых нужно пересчитать неориентированные или ориентированные графы определённых типов, как правило, в виде функции от числа вершин графа[1]. Эти задачи могут быть решены либо точно (как задача алгебраического перечисления[англ.]) или асимптотически. Пионерами в этой области математики были Пойа[2], Кэли[3] и Редфилд[англ.][4].

Thumb
Полный список всех деревьев с 2,3 и 4 помеченными вершинами: дерево с 2 вершинами, дерева с 3 вершинами и деревьев с 4 вершинами.
Remove ads

Помеченные и непомеченные задачи

В некоторых задачах перечисления графов вершины графов считаются помеченными, делая их отличимыми друг от друга. В других задачах любая перестановка вершин считается тем же графом, так что вершины считаются идентичными или непомеченными. В общем случае, помеченные задачи, как правило, оказываются проще[1]. Теорема Редфилда — Пойи является важным средством для сведения непомеченной задачи к помеченной — каждый непомеченный класс считается классом симметрии помеченных объектов.

Remove ads

Точные формулы перечисления

Суммиров вкратце
Перспектива

Некоторые важные результаты в этой области.

  • Число помеченных простых неориентированных графов с n вершинами равно 2n(n − 1)/2[5]
  • Число помеченных простых ориентированных графов с n вершинами равно 2n(n − 1)[6]
  • Число Cn связных помеченных неориентированных графов с n вершинами удовлетворяет рекуррентному соотношению[7]
из которого можно легко вычислить для n = 1, 2, 3, …, что значения Cn равны[8]:
1, 1, 4, 38, 728, 26704, 1866256, …
Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads