Лучшие вопросы
Таймлайн
Чат
Перспективы

Поверхность Шерка

Из Википедии, свободной энциклопедии

Поверхность Шерка
Remove ads

Поверхность Шерка (названа именем Генриха Шерка) является примером минимальной поверхности. Шерк описал две полные вложенные минимальные поверхности в 1834 году[1]. Его первая поверхность является дважды периодической поверхностью, а вторая — просто периодической. Они были третьим нетривиальным примером минимальных поверхностей (первые две — катеноид и геликоид)[2]. Две поверхности сопряжены друг другу.

Thumb
Анимация превращения друг в друга первой и второй поверхностей Шерка: они являются членами одного и того же ассоциированного семейства минимальных поверхностей.

Поверхности Шерка возникают при изучении некоторых задач о минимальных поверхностях и изучении гармонических диффеоморфизмов гиперболического пространства.

Remove ads

Первая поверхность Шерка

Суммиров вкратце
Перспектива

Первая поверхность Шерка асимптотически стремится к двум бесконечным семействам параллельных плоскостей, ортогональных друг другу. Поверхности образуют близ z = 0 арки мостов в шахматном порядке. Поверхность содержит бесконечное число прямых вертикальных линий.

Построение простой поверхности Шерка

Thumb
Поверхность Шерка Σ, заданная как график функции для x и y между и .
Thumb
Девять периодов поверхности Шерка.

Рассмотрим следующую минимальную поверхность на квадрате на евклидовой плоскости: для натурального числа n найти минимальную поверхность как график некоторой функции

так что

для
для

То есть, un удовлетворяет уравнению минимальной поверхности

и

Что будет с поверхностью при стремлении n к бесконечности? Ответ дал Х. Шерк в 1834 году: предельная поверхность является графиком функции

То есть поверхность Шерка над квадратом равна

Более общие поверхности Шерка

Можно рассмотреть похожие задачи с минимальными поверхностями на других четырёхугольниках на евклидовой плоскости. Можно также рассмотреть ту же задачу на четырёхугольниках на гиперболической плоскости. В 2006 году Гарольд Розенберг и Паскаль Коллин использовали гиперболические поверхности Шерка для построения гармонического диффеоморфизма из комплексной плоскости в гиперболическую плоскость (единичный диск с гиперболической метрикой), опровергая тем самым гипотезу гипотеза Шёна — Яу[англ.].

Remove ads

Вторая поверхность Шерка

Суммиров вкратце
Перспектива
Thumb
Вторая поверхность Шерка

Вторая поверхность Шерка глобально выглядит как две ортогональные плоскости, пересечение которых состоит из последовательности туннелей в чередующихся направлениях. Их пересечения с горизонтальными плоскостями состоит из чередующихся гипербол.

Поверхность задаётся уравнением:

Поверхность имеет Параметризация Вейерштрасса — Эннепера , и может быть параметризована как[3]:

для и . Это даёт один период поверхности, который может быть распространён в z-направлении симметрией.

Поверхность обобщил Х. Кархер в семейство сёдл пилона[англ.] периодических минимальных поверхностей.

В литературе по ошибке эту поверхность называют пятой поверхностью Шерка[4][5]. Чтобы исключить путаницу, полезно упоминать поверхность как поверхность Шерка одного периода или как башню Шерка.

Remove ads

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads