Лучшие вопросы
Таймлайн
Чат
Перспективы

Правильный 65537-угольник

высокосимметричная плоская фигура Из Википедии, свободной энциклопедии

Правильный 65537-угольник
Remove ads

Правильный 65537-угольник (шестьдеся̀тпятьты̀сячпятисо̀ттридцатисемиуго́льник[1])правильный многоугольник с 65 537 углами и 65 537 сторонами. Из-за того, что центральный угол мал, в графическом представлении правильный 65537-угольник почти не отличается от окружности (см. иллюстрацию).

Правильный 65537-угольник
Thumb

Правильный 65537-угольник визуально неотличим от окружности (при разрешении в 1000 пикселей отличие от окружности будет меньше одной миллионной пикселя).

Правильный 65537-угольник представляет интерес, поскольку 65 537 является простым числом Ферма, что делает возможным построение данного многоугольника с помощью циркуля и линейки. Эта задача была решена Иоганном Густавом Гермесом в 1894 году.

Remove ads

Построение

Суммиров вкратце
Перспектива

Отличительная особенность правильного 65537-угольника — это тот факт, что его возможно построить, используя только циркуль и линейку.

Thumb
Первый шаг в построении 65537-угольника

Число 65 537 — это самое большое известное простое число Ферма:

.

Гаусс в 1796 году доказал, что правильный n-угольник можно построить циркулем и линейкой, если нечётные простые делители числа n являются различными числами Ферма. В 1836 году П. Ванцель доказал необходимость этого условия для построения таких многоугольников. Ныне это утверждение известно как теорема Гаусса — Ванцеля.

В 1894 году Иоганн Густав Гермес после более чем десятилетних исследований нашёл способ построения правильного 65537-угольника и описал его в рукописи размером более 200 страниц[2] (оригинал рукописи хранится в библиотеке Гёттингенского университета).

Один слишком навязчивый аспирант довёл своего руководителя до того, что тот сказал ему: «Идите и разработайте построение правильного многоугольника с 65 537 сторонами». Аспирант удалился, чтобы вернуться через 20 лет с соответствующим построением[3].Дж. Литлвуд

Remove ads

Пропорции

Суммиров вкратце
Перспектива

Углы

Центральный угол равен .

Внутренний угол равен .

Наглядное представление

Для иллюстрации пропорций практически непредставимой фигуры могут служить следующие соображения:

  • Отклонение центрального угла от 0°, а также отклонение внутреннего угла от 180° составляет всего лишь примерно 0,005°. Если приподнять за один конец лежащую на земле жердь длиной 104,3 м только на 1 см, то она образует с землёй примерно этот угол.
  • Если нарисовать 65537-угольник с длиной одной стороны 1 см, то его наибольшая диагональ будет больше 200 м.
  • Если нарисовать 65537-угольник с длиной одной стороны 1 м, то радиусы его вписанной и описанной окружностей будут около 10 км, а разница между ними составит всего лишь около 0,024 мм.
  • Если нарисовать 65537-угольник диаметром 20 см, то длина одной его стороны окажется менее одной десятой толщины самого тонкого человеческого волоса.
Remove ads

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads