Лучшие вопросы
Таймлайн
Чат
Перспективы

Простое число Фибоначчи — Вифериха

Из Википедии, свободной энциклопедии

Remove ads

Простое число Фибоначчи — Вифериха (также простое число Уолла — Суня — Суня, англ. Wall – Sun – Sun) — одно из предположительно существующих простых чисел определённого вида, связанных с числами Фибоначчи. По состоянию на 2023 год ни одного такого числа не найдено.

Нерешённые проблемы математики: Существуют ли простые числа Фибоначчи — Вифериха? Если да, конечно ли их количество?
Remove ads

Определение

Простое называется простым числом Фибоначчи — Вифериха, если делит число Фибоначчи , где символ Лежандра определяется как:

Эквивалентное определение: простое называется простым числом Фибоначи — Вифериха, если , где  — -ое число Люка.[1]:42

Remove ads

Существование

Существует гипотеза, что простых чисел Фибоначчи — Вифериха бесконечно много[2], однако по состоянию на 2013 год ни одно такое простое число не обнаружено.

В 2007 году Ричард Макинтош (Richard J. McIntosh) и Эрик Рётгер (Eric L. Roettger) показали, что если они существуют, то должны быть больше 2⋅1014[3], в 2010 году Франсуа Дорэ (François G. Dorais) и Доминик Клайв (Dominic Klyve) довели границу до 9,7⋅1014[4]. В декабре 2011 года был начат поиск в проекте PrimeGrid[5], в декабре 2012 года PrimeGrid дошёл до границы 1,5⋅1016[6]. По состоянию на апрель 2014 года PrimeGrid дошёл до границы 2.8⋅1016 и продолжает поиск[6].

Remove ads

История

Простые числа Уолла — Суня — Суня названы в честь Дональда Уолла (Donald Dines Wall)[7], Сунь Чжихуна (Sūn Zhìhóng) и Сунь Чживэя (Sūn Zhìwěi), которые в 1992 году показали, что если первый случай великой теоремы Ферма неверен для некоторого простого то должно быть простым числом Фибоначи — Вифериха[8]. Таким образом, до доказательства великой теоремы Ферма Эндрю Уайлсом, поиск простых Фибоначчи — Вифериха преследовал цель найти потенциальный контрпример.

Обобщения

Суммиров вкратце
Перспектива

Простое (число) трибоначчи — Вифериха (англ. Tribonacci-Wieferich prime)[9] — простое число, удовлетворяющее условию

где  — наименьшее положительное целое, для которого выполняется условие

число трибоначчи с номером n, определённое как

Простых трибоначчи — Вифериха, меньших 1011, не существует[9].

Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads