Лучшие вопросы
Таймлайн
Чат
Перспективы

Простое число Вольстенхольма

Из Википедии, свободной энциклопедии

Remove ads

В теории чисел простым числом Вольстенхольма называется всякое простое число, удовлетворяющее усиленному сравнению из теоремы Вольстенхольма. При этом исходному сравнению из теоремы Вольстенхольма удовлетворяют все простые числа, кроме 2 и 3. Простые Вольстенхольма названы в честь математика Джозефа Вольстенхольма, который первым доказал теорему в XIX веке.

Интерес к этим простым возник по причине их связи с великой теоремой Ферма.

Известны только два простых числа Вольстенхольма — это 16843 и 2124679 (последовательность A088164 в OEIS). Других простых чисел Вольстенхольма, меньших 109, нет[1].

Remove ads

Определения

Суммиров вкратце
Перспектива
Нерешённые проблемы математики: Имеются ли простые числа Вольстенхольма, отличные от 16843 и 2124679?

Простое число Вольстенхольма может быть определено несколькими эквивалентными путями.

Через биномиальные коэффициенты

Простое число Вольстенхольма — это простое число, удовлетворяющее сравнению

где выражение в левой части обозначает биномиальный коэффициент[2]. Сравните с теоремой Вольстенхольма, которая утверждает, что для любого простого p > 3 выполняется следующее сравнение:

Через числа Бернулли

Простое число Вольстенхольма — это простое число p, делящее (без остатка) числитель числа Бернулли Bp−3[3][4][5]. Таким образом, простые числа Вольстенхольма представляют собой подмножество иррегулярных простых чисел.

Через иррегулярные пары

Простое число Вольстенхольма p — это простое число, такое, что (p, p-3) является иррегулярной парой[6][7].

Через гармонические числа

Простое число Вольстенхольма p — это простое число, такое, что[8]

то есть числитель гармонического числа делится на p3.

Remove ads

Поиск и текущее состояние

Поиск простых чисел Вольстенхольма начался в 1960-х годах и продолжается до сих пор. Последний результат был опубликован в 2007 году. Первое простое число Вольстенхольма 16843 было найдено в 1964 году, хотя результат и не был опубликован в явном виде[9]. Находка 1964 года была потом независимо подтверждена в 1970-х годах. Это число оставалось единственным известным примером таких чисел почти 20 лет, пока не было объявлено об обнаружении второго простого числа Вольстенхольма 2124679 в 1993 году[10]. В то время вплоть до 1,2⋅107 не было найдено ни одного числа Вольстенхольма, кроме упомянутых двух[11]. Позднее граница была поднята до 2⋅108 Макинтошем (McIntosh) в 1995 году[4], а Тревисан (Trevisan) и Вебер (Weber) смогли достичь 2,5⋅108[12]. Последний результат зафиксирован в 2007 году — до 1⋅109 так и не нашли простых чисел Вольстенхольма[13].

Remove ads

Ожидаемое количество

Суммиров вкратце
Перспектива

Существует гипотеза, что простых чисел Вольстенхольма бесконечно много. Предполагается также, что количество не превосходящих x простых чисел Вольстенхольма должно быть порядка ln ln x, где ln обозначает натуральный логарифм. Для любого простого числа p ≥ 5 частным Вольстенхольма называется

Ясно, что p является простым числом Вольстенхольма тогда и только тогда, когда Wp ≡ 0 (mod p). Из эмпирических наблюдений можно предположить, что остаток Wp по модулю p равномерно распределён на множестве {0, 1, …, p-1}. По этим причинам вероятность получения определённого остатка (например, 0) должна быть около 1/p[4].

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads