Лучшие вопросы
Таймлайн
Чат
Перспективы

Разбиение числа

Представление натурального числа в виде суммы других натуральных чисел Из Википедии, свободной энциклопедии

Remove ads

Разбие́ние натурального числа́  — это такое представление числа в виде суммы положительных целых чисел , которое, в отличие от композиции, не учитывает порядок слагаемых. Слагаемые в разбиении называются частями. В канонической записи разбиения слагаемые перечисляются в невозрастающем порядке.

Если , то соответствующее этому набору чисел разбиение обычно обозначается как {} = . Число при этом называют мощностью разбиения и обозначают , а число называют длиной разбиения и обозначают .

Число разбиений натурального числа является одним из фундаментальных объектов изучения в комбинаторике.

Remove ads

Примеры

Например, {3, 1, 1} или {3, 2} — разбиения числа 5, поскольку 5 = 3 + 1 + 1 = 3 + 2. Всего существует разбиений числа 5: {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}.

Некоторые значения числа разбиений приведены в следующей таблице[1]:

Подробнее n, p(n) ...
Remove ads

Число разбиений

Суммиров вкратце
Перспектива

Производящая функция

Последовательность числа разбиений имеет следующую производящую функцию:

Эта формула была открыта Эйлером в 1740 году.

Пентагональная теорема Эйлера

Изучая производящую функцию последовательности , Эйлер сосредоточил внимание на её знаменателе, то есть на произведении . При раскрытии скобок это бесконечное произведение приобретает следующий вид:

В правой части слагаемые имеют вид где  пробегает все возможные целые значения, и в этом случае сами числа называются обобщёнными пятиугольными. При натуральных они называются просто пятиугольными.[2]

Из этого наблюдения Эйлер выдвинул предположение о пентагональной теореме:

а впоследствии её доказал. Эта теорема позволяет вычислять числа разбиений при помощи деления формальных степенны́х рядов.

Асимптотические формулы

Асимптотическое выражение для количества разбиений было получено Харди и Рамануджаном в 1918 году, а в 1920 году независимо от них — российским математиком Успенским:[3]

при

Например, .

Впоследствии Харди и Рамануджан нашли более точное выражение в виде суммы, а Радемахер вывел точный сходящийся ряд, по которому можно находить сколь угодно близкие асимптотические представления:

где

Здесь суммирование ведётся по , взаимно простым с , а  — сумма Дедекинда. Ряд сходится очень быстро.

Рекуррентные формулы

Количество разбиений числа на слагаемые, не превышающие , удовлетворяет рекуррентной формуле:

с начальными значениями:

для всех

При этом количество всевозможных разбиений числа равно .

Remove ads

Диаграммы Юнга

Суммиров вкратце
Перспектива
Thumb
Диаграмма Юнга формы (5, 4, 1), Французская нотация

Разбиения удобно представлять в виде наглядных геометрических объектов, называемых диаграммами Юнга, в честь английского математика Альфреда Юнга[англ.]. Диаграмма Юнга разбиения  — подмножество первого квадранта плоскости, разбитое на ячейки, каждая из которых представляет собой единичный квадрат. Ячейки размещаются в строки, первая строка имеет длину , над ней расположена строка длиной , и т. д. до -й строки длины . Строки выровнены по левому краю.

Более формально, диаграмма Юнга — это замыкание множества точек таких, что

и

где обозначает целую часть .

В англоязычной литературе диаграммы Юнга часто изображают отражёнными относительно оси абсцисс.

Схожий объект, называемый диаграммой Феррерса, отличается тем, что

  • вместо ячеек изображаются точки;
  • диаграмма транспонируется: ряды и столбцы меняются местами.

Сопряженным (или транспонированным) разбиением к называется разбиение, чья диаграмма Юнга является диаграммой Юнга разбиения , отражённая относительно прямой . Например, сопряжённым к разбиению (6,4,4,1) будет разбиение (4,3,3,3,1,1). Сопряжённое разбиение обозначается .

Remove ads

Сумма и произведение разбиений

Суммиров вкратце
Перспектива

Пусть имеются два разбиения и . Тогда для них определены следующие операции:

  • : ;
  • : разбиение, содержащее части и в порядке нестрогого убывания;
  • : ;
  • : разбиение, содержащее части для всех и всех в порядке нестрогого убывания.

Например, если , то

Операции сложения, как и операции умножения, двойственны относительно сопряжения[источник не указан 927 дней]:

;
.
Remove ads

Порядок

Суммиров вкратце
Перспектива

Пусть имеются два разбиения и числа .

Лексикографический порядок. Говорят, что старше по лексикографическому порядку, если существует такое натуральное , что для каждого , а также .

В таблице выше разбиения расположены в лексикографическом порядке.

Естественный (частичный) порядок. Говорят, что старше по естественному порядку (обозначается ), если для каждого выполняется неравенство .

Начиная с n=6 можно найти разбиения, которые невозможно сравнить в этом смысле. Например, (3, 1, 1, 1) и (2, 2, 2).

Для естественного порядка выполняется эквивалентность:

Remove ads

Применение

Разбиения естественным образом возникают в ряде математических задач. Наиболее значимой из них является теория представлений симметрической группы, где разбиения естественно параметризуют все неприводимые представления. Суммы по всем разбиениям часто встречаются в математическом анализе.

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads