Лучшие вопросы
Таймлайн
Чат
Перспективы
Регрессия Деминга
Из Википедии, свободной энциклопедии
Remove ads
В статистике регрессия Деминга, названная именем У. К. Деминга, — это вид регрессии с ошибками в переменных[англ.], которая пытается найти прямую наилучшего сглаживания для двумерного набора данных. Регрессия отличается от простой линейной регрессии[англ.] в том, что она принимает во внимание ошибки[англ.] в наблюдении как по оси x, так и по оси y. Регрессия является частным случаем метода наименьших полных квадратов, которая рассматривает любое число показателей и имеет более сложную структуру ошибок.

Регрессия Деминга эквивалентна оценке максимального правдоподобия на модели с ошибками в переменных[англ.], в которой ошибки двух переменных считаются независимыми и имеют нормальное распределение, а отношение их дисперсий, δ, известно [1]. На практике это отношение может быть оценено из исходных данных. Однако процедура регрессии не принимает во внимание возможные ошибки в оценке отношений дисперсии.
Регрессия Деминга лишь слегка сложнее простой линейной регрессии[англ.]. Большинство статистических пакетов, используемых в клинической химии, предоставляют регрессию Деминга.
Модель первоначально была предложена Адкоком[2], который рассматривал случай δ = 1, а затем рассматривалась в более общем виде Куммеллем [3] с произвольным δ. Однако их идеи оставались большей частью незамеченными более 50 лет, пока их не возродил Купманс[4] и позднее распространил Деминг[5]. Книга последнего стала столь популярной в клинической химии и связанных областях, что метод в этих областях получил название регрессия Деминга[6].
Remove ads
Спецификация
Суммиров вкратце
Перспектива
Предположим, что данные (yi, xi) являются значениями, полученными в ходе измерений "истинных" значений (yi*, xi*), которые лежат на регрессионной прямой:
где ошибки ε и η независимы и отношение их дисперсий, известно:
На практике дисперсии параметров и часто неизвестны, что усложняет оценку . Заметим, что когда метод измерения и тот же самый, эти дисперсии, скорее всего, равны, так что в этом случае .
Мы пытаемся найти прямую "наилучшего сглаживания"
такую, что взвешенная сумма квадратов остатков минимальна [7]
Remove ads
Решение
Суммиров вкратце
Перспектива
Решение может быть выражено в терминах моментов второго порядка. То есть мы сначала вычисляем следующие величины (все суммы берутся по i = 1 : n):
Наконец, параметры оценки методом наименьших квадратов будут[8]:
Remove ads
Ортогональная регрессия
Суммиров вкратце
Перспектива
В случае равенства дисперсий ошибок, т.е. в случае , регрессия Деминга становится ортогональной регрессией — она минимизирует сумму квадратов расстояний от точек выборки до регрессионной прямой[англ.]*. В этом случае обозначим каждую точку выборки zj на комплексной плоскости (т.е. точка (xj, yj) выборки записывается как zj = xj + iyj, где i — мнимая единица). Обозначим через Z сумму квадратов разностей от точек выборки до центра тяжести (также представленного в комплексных координатах). Центр тяжести — это среднее точек выборки. Тогда[9]:
- Если Z = 0, то любая прямая, проходящая через центр тяжести, является прямой наилучшего ортогонального сглаживания.
- Если Z ≠ 0, прямая наилучшего ортогонального сглаживания проходит через центр тяжести и параллельна вектору из начала координат в .
Тригонометрическую интерпретацию прямой наилучшего ортогонального сглаживания дал Кулидж в 1913[10].
Приложения
В случае трёх неколлинеарных точек на плоскости треугольник, образованный этими точками, имеет единственный вписанный эллипс Штейнера, который касается сторон треугольника в средних точках. Главная ось этого эллипса будет ортогональной регрессией этих трёх вершин[11].
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads