Лучшие вопросы
Таймлайн
Чат
Перспективы

Риманова поверхность

математический объект Из Википедии, свободной энциклопедии

Риманова поверхность
Remove ads

Ри́манова пове́рхность — математический объект, традиционное в комплексном анализе название одномерного комплексного дифференцируемого многообразия.

Thumb
Риманова поверхность для функции
Thumb
Thumb

Примерами римановых поверхностей являются комплексная плоскость и сфера Римана. Поверхность Римана позволяет геометрически представить многозначные функции комплексной переменной таким образом, что каждой её точке соответствует одно значение многозначной функции, причём при непрерывном перемещении по поверхности непрерывно изменяется и функция[1]. Каноническим видом поверхности Римана является представление в виде плоской лепёшки с некоторым количеством дыр[2].

Топологической характеристикой римановой поверхности является род; поверхность рода — это сфера, поверхность рода — тор[3].

Remove ads

История

Поверхности такого рода систематически изучать начал Бернхард Риман (1826—1866).

По мнению Феликса Клейна, идея римановой поверхности принадлежит еще Галуа: в предсмертном письме он упоминает среди своих достижений какие-то исследования по «двусмысленности функций» (фр. ambiguïté des functions)[4].

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads