Лучшие вопросы
Таймлайн
Чат
Перспективы
Связанные состояния в континууме
Из Википедии, свободной энциклопедии
Remove ads
Связанные состояния в континууме (ССК) или локализованные состояния в континууме (ЛСК), англ. bound state in the continuum (BIC) — это собственное состояние какой-либо квантовомеханической или другой открытой системы, обладающее следующими свойствами:
- Энергия лежит в области непрерывного спектра (континуума) распространяющихся мод окружающего пространства;
- Состояние не взаимодействует ни с одним из состояний континуума (не может излучать плоскую, цилиндрическую или сферическую волну и не может возбуждаться никакой волной), а значит обладает бесконечным временем жизни (добротностью) и вещественной энергией в отсутствие безызлучательных потерь.

В силу волновой природы, этот феномен наблюдается не только в квантовой механике, но также в фотонике, в теории упругости и т.д. Связанные состояния в запрещённой зоне, где нет конечных решений на бесконечности, широко известны (атомы, квантовые точки, дефекты в полупроводниках). Однако, CCK не следует путать с обычными связанными состояниями. Для решений в континууме, которые связаны с этим континуумом, известны резонансные[1] состояния, которые распадаются (теряют энергию) со временем. Они могут возбуждаться падающей волной с той же энергией, и к ним относятся, например, собственные моды открытых оптических резонаторов[4]. В отличие от резонансных состояний, связанные состояния в континууме имеют вещественные собственные значения энергии и поэтому не взаимодействуют с состояниями непрерывного спектра и не могут распадаться[2]. Кроме того, ССК не следует путать с собственными состояниями таких систем как потенциальная яма с бесконечными стенками или резонатор с идеально проводящими стенками, поскольку такие системы не являются открытыми по определению.
Remove ads
Классификация
Суммиров вкратце
Перспектива
Remove ads
ССК Вигнера — фон Неймана
Суммиров вкратце
Перспектива
Впервые связанные состояния в континууме были предсказаны в 1929 году в работе Юджина Вигнера и Джона фон Неймана[5]. Были рассмотрены два потенциала, в которых существует ССК, появляющееся по двум различным причинам.
В этой работе сначала выбирается сферически-симметричная волновая функция таким образом, чтобы быть квадратично-интегрируемой по всему пространству. Затем подбирается такой потенциал, чтобы эта волновая функция соответствовала нулевому значению энергии.
Потенциал является сферически-симметричным, тогда волновое уравнение запишется следующим образом:
при этом исчезают производные по углам, так как мы ограничиваемся рассмотрением только сферически-симметричных волновых функций:
Для того, чтобы была собственным значением для сферически-симметричной волновой функции , потенциал должен быть
- .
Получим конкретные значения и , для которых будет наблюдаться ССК.
Первый случай

Рассмотрим функцию . Поскольку интеграл должен быть конечным, то рассматривая поведение при , получим, что , рассматривая поведение при , получим, что . Регулярность для требует . В итоге получаем .
Положим , тогда потенциал будет равен (отбросив несущественный множитель ):
Собственная функция и потенциальная кривая показаны на рисунке. Кажется, что электрон просто скатится с потенциала и энергия будет принадлежать сплошному спектру, однако существует стационарная орбита с .
В работе[5] дана следующая интерпретация: такое поведение можно понять, исходя из аналогии с классической механикой (соображения принадлежат Лео Силарду). Движение материальной точки в потенциале описывается следующим уравнением:
Легко понять, что когда , , и тогда асимптотика
то есть, за конечное время точка уходит на бесконечность. Стационарное решение означает, что точка снова возвращается из бесконечности, что она оттуда как будто отражается и начинает колебаться. То, что при стремится к нулю, следует из того, что она скатывается с большой потенциальной горки и обладает огромной скоростью, а значит коротким временем жизни. И поскольку весь колебательный процесс (из на бесконечность и обратно) периодический, то логично, что эта квантово-механическая задача обладает стационарным решением.
Второй случай

Перейдем ко второму примеру, который уже нельзя интерпретировать из таких соображений.
Для начала, возьмем функцию , тогда . Это расходящиеся сферические волны, поскольку энергия больше, чем потенциал , классическая кинетическая энергия остается положительной. Волновая функция принадлежит непрерывному спектру, интеграл расходится. Попробуем поменять волновую функцию таким образом, чтобы квадратичный интеграл сошелся, а потенциал варьировался вблизи −1.
Рассмотрим следующий анзац:
Если функция непрерывна, и при асимптотика равна , то интеграл будет конечным. Потенциал при этом будет равен (с исправленной арифметической ошибкой в оригинальной статье)[61]:
Для того, чтобы потенциал оставался вблизи −1, и при стремился к −1, мы должны функции сделать малыми и при устремить к нулю.
В первом случае также должна исчезать для , а именно для , то есть для . Это случай, когда или любая другая функция этого выражения.
Положим , где произвольна (здесь при стремится к ). Тогда
Выражение для потенциала является громоздким, но из графиков видно, что для потенциал стремится к −1. Кроме того, оказывается, что для любого можно выбрать такое A, что потенциал будет находиться между и . Можно видеть, что потенциал колеблется с периодом , а волновая функция — с периодом . Получается, что все отраженные волны от «горбов» такого потенциала находятся в фазе, и функция локализуется в центре, отражаясь от потенциала по механизму, похожему на отражение от брэгговского зеркала.
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads