Лучшие вопросы
Таймлайн
Чат
Перспективы

Слепая деконволюция

Из Википедии, свободной энциклопедии

Слепая деконволюция
Remove ads

Слепая деконволюция — метод восстановления изображения без априорной информации о функции размытия точки оптической системы, которая вносит в регистрируемый полезный сигнал шум, искажения и т. п.

Thumb
Применение методов слепой деконволюции к изображениям, полученным с орбитального телескопа «Хаббл»

История

Классические методы восстановления изображений ведут свою историю с 60-х годов XX века, когда остро встала новая по тем временам проблематика исследования космоса. Примерно в середине 70-х годов появились ранние алгоритмы, которые напрямую задействовали идеи слепой деконволюции пытаясь оценить известные закономерности размывания изображений. Затем небольшой, но целеустремлённый всплеск работ последовал в поздние 80-е годы, и наконец полноценное возрождение научного интереса произошло в 90-х годах, когда эта область интенсивно разрабатывалась сообществами физиков-оптиков, астрономов и специалистов по обработке изображений. Появившиеся в результате их усилий идеи базируются на методах линейной алгебры, численного анализа и статистической теории оценивания[1].

В настоящее время алгоритмы, основанные на слепой деконволюции, используются в ряде прикладных и технических дисциплин, таких как, например: астрономические наблюдения, дистанционное зондирование, микроскопия, биомедицинская оптика, проблематика сверхразрешения и отслеживания движущихся целей[2].

Remove ads

Характер проблемы

Суммиров вкратце
Перспектива

Выделяют два основных фактора, отрицательно влияющих на качество полученного изображения в ходе его формирования на датчиках регистрирующего прибора. Первым является размазанность картинки (или её фрагментов), которая проявляет себя в виде потери чёткости. Она может возникнуть вследствие несовершенства оптической системы, неправильной фокусировки поступающего сигнала или взаимном смещении камеры относительно объекта съёмки. Кроме этого, к аналогичному эффекту могут привести турбулентные свойства атмосферного канала, по которому распространяется сигнал. В некоторых типах регистрирующей аппаратуры высокого разрешения (телескопах, микроскопах и т. п.) это явление присутствует на уровне дифракционного предела. С математической точки зрения смазанность нередко рассматривается как результат низкочастотной фильтрации исходного массива данных[3].

Вторым существенным фактором является неизбежное присутствие разного рода шумов, которые накладываются на полезную компоненту сигнала в процессе квантования и записи информации. Причины появления шумовых искажений могут быть самыми разнообразными: случайные флуктуации количества фотонов в точках их регистрации, тепловой шум сенсоров, гранулярный шум при использовании лазерного источника света, искажения при оцифровке сигнала и т. п.[4]

Remove ads

Постановка задачи

Суммиров вкратце
Перспектива
Thumb
Замутнённое исходное изображение
Thumb
Восстановленное изображение

В классическом примере линейной системы математическая модель искажения поступающего полезного сигнала , как правило, задаётся следующим образом[5]:

,

где:

 — векторная переменная пространственных координат,
 — функция размытия точки,
 — аддитивный шумовой процесс,
 — наблюдаемый сигнал, представляющий из себя результат наложения шума и внесения искажений.

В рамках этих предположений конечной целью становится построение адекватной оценки для функций и опираясь на вид зарегистрированного сигнала . При этом, в большинстве прикладных задач в роли шумовой компоненты обычно выступает белый гауссовский шум, некоррелированный с исследуемым сигналом. Нередко для представления этой задачи используется матричная форма записи[5].

Вообще говоря, слепая деконволюция является плохо обусловленной задачей, зависимость её решения от входных параметров уравнения совсем не обязательно должна обладать свойством непрерывности, найденное решение может быть не единственным и совсем не обязательно обязано существовать[5]. Дополнительные сложности накладываются при использовании инструментария из области Фурье-анализа и при поиске решения обратной задачи в спектральной плоскости, так как, несмотря на то, что множества положительных и финитных функций обладают свойством выпуклости, множество Фурье-образов от произведения функций выпуклым не является[6].

Remove ads

Основные подходы к поиску решения

Выделяют два разных подхода к восстановлению исходной структуры искажённого изображения, которые, в свою очередь, произвели на свет два класса практических способов нахождения решения. Первый из них связан с априорной оценкой функции размытия точки , второй — с совместным построением оценок для функции размытия точки и для искомой функции[7].

В первой группе методов используется построение функции размытия точки исходя из информации о рассеивающих свойствах передаточной системы, которая доступна априори (экспериментально или исходя из какого-либо рода общих соображений). В дальнейшем полученную оценку для возможно параметризовать и пустить в дело в связке с классическими алгоритмами восстановления изображений на базе теоремы Байеса и метода максимального правдоподобия[7].

Во втором подходе осуществляется совместная оценка функции размытия точки и искомого изображения, где априорная информация о свойствах изображения и передаточного канала объединяется в виде моделей, параметры которых оцениваются из имеющихся данных. Затем эти модели используются в расчётных схемах, которые чаще всего, строятся индивидуально для и [8].

В рамках обоих подходов широко применяются итеративные процедуры, когда, например, сначала вычисляется функция размытия точки, затем по полученной информации улучшается оценка изображения , затем проводится регуляризация решения (обнуление отрицательных значений в пространственной плоскости и т. п.), по полученным данным корректируется функция размытия точки, на её основе вычисляется новая оценка функции , она опять стабилизируется и т. д. пока, после некоторого конечного числа итераций, не получается подобраться к удовлетворительному решению. Однако, критерии надёжной сходимости таких схем всё ещё остаются актуальной и весьма остро стоящей перед научным сообществом проблемой[6][9].

Remove ads

Примечания

Использованные источники

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads