Лучшие вопросы
Таймлайн
Чат
Перспективы

Среднее степенное взвешенное

Из Википедии, свободной энциклопедии

Remove ads

Среднее степенное взвешенное — разновидность среднего значения. Для набора положительных вещественных чисел с параметром и неотрицательными весами определяется как

.

Если веса нормированы к единице (то есть их сумма равна единице), то выражение для среднего степенного взвешенного принимает вид

.
Remove ads

Свойства

Remove ads

Связь с энтропией Реньи

Суммиров вкратце
Перспектива

Информационную энтропию некоторой системы можно определить как логарифм числа доступных состояний системы (или их эффективного количества, если состояния не равновероятны). Учтём, что вероятности пребывания системы в состоянии с номером () нормированы к . Если состояния системы равновероятны и имеют вероятность , то . В случае разных вероятностей состояний определим эффективное количество состояний как среднее степенное взвешенное от величин с весами и параметром (где ):

.

Отсюда получаем выражение для энтропии

,

совпадающее с выражением для энтропии Реньи[1]. Нетрудно видеть, что в пределе при (или ) энтропия Реньи сходится к энтропии Шеннона (при том, что среднее степенное взвешенное — к среднему геометрическому взвешенному). По определению энтропии Реньи должно соблюдаться дополнительное ограничение (или ).

Remove ads

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads