Лучшие вопросы
Таймлайн
Чат
Перспективы

Сферические функции

Из Википедии, свободной энциклопедии

Сферические функции
Remove ads

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.

Thumb
Гармонические сферические функции
Remove ads

Определение

Суммиров вкратце
Перспектива
Thumb
Вещественные сферические функции Ylm, l=0…4 (сверху вниз), m=0…4 (слева направо). Функции отрицательного порядка Yl-m повёрнуты вокруг оси Z на 90/m градусов относительно функций положительного порядка.

Сферические функции являются собственными функциями оператора Лапласа в сферической системе координат (обозначение ). Они образуют ортонормированную систему в пространстве функций на сфере в трёхмерном пространстве:

,

где * обозначает комплексное сопряжение,  — символ Кронекера.

Сферические функции имеют вид

,

где функции являются решениями уравнения

и имеют вид

Здесь  — присоединённые многочлены Лежандра, а  — факториал.

Присоединенные многочлены Лежандра с отрицательным здесь вводятся как

Решение уравнения Лапласа в сферических координатах есть так называемая шаровая функция, получаемая умножением сферической функции на решение радиального уравнения.

Remove ads

Вещественная форма

Суммиров вкратце
Перспектива
Thumb
Вещественные сферические функции до шестого порядка

Для сферических функций форма зависимости от угла  — комплексная экспонента. Используя формулу Эйлера, можно ввести вещественные сферические функции. Иногда их удобнее использовать в связи с тем, что они могут быть наглядно показаны на иллюстрациях, в отличие от комплексных. Однако значимое удобство комплексных функций (утрачиваемое при переходе к вещественным) состоит в независимости квадрата их модуля от угла .

Обратное преобразование:

Иногда вещественные сферические функции называют зональными, тессеральными и секториальными[1]. Функции с m > 0 зависят от угла как косинус, а с m < 0 — как синус.

Remove ads

Повороты

Thumb
Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям

Рассмотрим поворот системы координат , на Углы Эйлера который преобрaзует единичный вектор в вектор . При этом углы вектора в новой системе координат выражаются через углы в старой системе координат следующим образом

В новой системе координат сферическая функция с индексами и будет представима в виде линейной комбинации всех функций с тем же номером и различными . Коэффициентами в линейной комбинации являются комплексно- сопряженные D-матрицы Вигнера[2]

Сферические функции с номером образуют базис неприводимого представления размерности группы вращений SO(3).

Remove ads

Разложение плоской волны по сферическим функциям

Суммиров вкратце
Перспектива

Комплексная экспонента может быть представлена в виде разложения по сферическим функциям

Здесь  — сферическая функция Бесселя

Remove ads

Разложение произведений сферических функций

Суммиров вкратце
Перспектива

Разложения Клебша-Гордана для произведений двух сферических функций выглядят следующим образом [3]:

Remove ads

См. также

Примечания

Литература

Приложения

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads