Лучшие вопросы
Таймлайн
Чат
Перспективы
Твердотельный накопитель
устройство хранения данных Из Википедии, свободной энциклопедии
Remove ads
Твердотельный накопитель (англ. Solid-State Drive, SSD) — компьютерное энергонезависимое немеханическое запоминающее устройство на основе микросхем памяти, альтернатива жёстким дискам (HDD). Наиболее распространённый вид твердотельных накопителей использует для хранения данных флеш-память типа NAND, однако существуют варианты, в которых накопитель создаётся на базе DRAM-памяти, снабжённой дополнительным источником питания — аккумулятором[1]. Помимо собственно микросхем памяти, подобный накопитель содержит управляющую микросхему — контроллер.





В настоящее время твердотельные накопители используются как в носимых (ноутбуках, нетбуках, планшетах), так и в стационарных компьютерах для повышения производительности. На 2016 год наиболее производительными выступали SSD формата M.2 с интерфейсом NVMe[2], а к 2025 году их скорость достигла 14900 Мбайт/с[3][4].
По сравнению с традиционными жёсткими дисками твердотельные накопители имеют меньший размер и вес, являются бесшумными, а также многократно более устойчивы к механическим повреждениям (например, при падении) и имеют гораздо бо́льшую скорость производимых операций. В то же время, они имеют в несколько раз бо́льшую стоимость в пересчёте на гигабайт и меньшую износостойкость (ресурс записи).
Remove ads
Описание
Суммиров вкратце
Перспектива
SSD представляют собой устройства, хранящие данные в микросхемах вместо вращающихся металлических дисков или магнитных лент. Причина их появления отражает тот факт, что скорость обработки данных в процессоре намного превышает скорость записи данных в HDD. Магнитные диски на протяжении десятилетий доминировали в корпоративном сегменте хранения данных, за это время (с 1950-х) ёмкость носителей выросла в двести тысяч раз, скорость работы процессоров тоже сильно возросла, но скорость доступа к данным изменилась значительно меньше и диски стали «узким местом». Проблему решают твердотельные накопители — они обеспечивают намного большие скорости работы с данными по сравнению с жёсткими дисками[5]. SSD за счёт использования микросхем флеш-памяти по своим характеристикам существенно отличаются от жёстких дисков с магнитными пластинами.
С целью оптимизации использования SSD в 2011 году был разработан интерфейс NVMe — англ. Non-Volatile Memory Express, поддержка которого была добавлена в Windows, начиная только с версии 8.1. В Windows 7 поддержку протокола обеспечивает исправление (hotfix) KB2990941. Не все материнские платы поддерживают интерфейс NVMe, поэтому всё ещё сохраняет популярность старый интерфейс SATA[6].
Основные характеристики твердотельных накопителей[7]:
- наименьшее время доступа к данным: от ста до тысячи раз быстрее, чем у механических дисков;
- высокая скорость, вплоть до нескольких гигабайт в секунду для произвольно расположенных данных;
- высокие значения IOPS благодаря высокой скорости и низкому времени доступа;
- низкая цена производительности, лучшее соотношение цены к производительности среди всех устройств хранения;
- высокая надёжность; SSD дают уровень сохранности данных такой же, как другие полупроводниковые устройства.
В отличие от жёстких дисков, цена SSD очень сильно зависит от доступной ёмкости, что связано с ограниченной плотностью размещения ячеек памяти и ограничением размера кристалла в микросхеме[8].
Гибридные накопители
Существуют также гибридные жёсткие диски (англ. SSHD, solid-state hybrid drive), в которых совмещена твердотельная память и механический жёсткий диск[9][10]. Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных. Флеш-память в них используется в качестве буфера (кэша) небольшого объёма (к примеру, в Seagate Momentus XT от 4 до 8 Гбайт)[11], либо (реже) может быть доступной как отдельный накопитель (англ. dual-drive hybrid systems)[источник не указан 2272 дня].
Технология Intel Smart Response позволяет совместно использовать SSD и HDD с целью кеширования часто используемых данных (файлов) на SSD, плюс к тому более эффективно использует SSHD[12][13].
У других производителей также есть свои технологии для использования SSD для кеширования данных, хранящихся в HDD: Marvell HyperDuo (в контроллере Marvell 88SE9130), Adaptec MaxIQ (MaxCache), LSI CacheCade. Из них только HyperDuo предназначена для домашнего использования[14][15][16][17].
Название
![]() | В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
К твердотельным накопителям относятся только накопители на полупроводниках. Жёсткие и оптические диски к ним не относятся, хотя они, строго говоря, являются твёрдыми телами. Эта терминология противоположна используемой в лазерах — твердотельными лазерами называют лазеры на основе любых твёрдых тел, за исключением полупроводников.
Первоначально твердотельные накопители называли «твердотельными дисками» (англ. Solid-State Disk), хотя ни один из твердотельных накопителей не является диском. Сейчас это название становится малоупотребительным.
Remove ads
История развития
Суммиров вкратце
Перспектива
- 1978 год — американская компания StorageTek разработала первый полупроводниковый накопитель современного типа (основанный на RAM-памяти).[источник не указан 39 дней]
- 1982 год — американская компания Cray представила полупроводниковый накопитель на RAM-памяти для своих суперкомпьютеров Cray-1 со скоростью 100 Мбит/с и Cray X-MP со скоростью 320 Мбит/с, объёмом 8, 16 или 32 миллиона 64-разрядных слов[18].
- 1995 год — израильская компания M-Systems представила первый полупроводниковый накопитель на flash-памяти.[источник не указан 39 дней][19]
- 2008 год — южнокорейской компании Mtron Storage Technology удалось создать SSD-накопитель объёмом 128 ГБ со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с.[источник не указан 39 дней]
- 2025 год — Sandisk представила потребительский накопитель WD Black SN8100 стандарта PCIe 5.0 со скоростью чтения и записи 14 900 Мбайт/с и 14 000 Мбайт/с соответственно[20][21][3][4].
Производители и рынок
Флеш-память NAND для SSD выпускалась[когда?] компаниями SanDisk, Toshiba (Toshiba Memory[англ.], она же Kioxia[англ.][22]), в 2016 году — Samsung, Intel, Micron[23].
В 2013 году крупнейшими производителями микросхем NAND были Samsung, Toshiba, Micron и SK-Hynix[24], микросхем контроллеров для SSD — LSI-SandForce[англ.], Marvell, Silicon Motion[англ.], Phison и JMicron[25]. В том же году Samsung, Toshiba и Micron начали выпускать накопители с микросхемами 3D NAND[англ.], которая позволила снизить стоимость устройств, особенно высокой ёмкости[26].
В I квартале 2016 года крупнейшими производителями SSD были компании Samsung Electronics (первое место, около 40 % рынка), SanDisk (12 %), Lite-On (Plextor[англ.][27], Lite-On), Kingston, Intel, Micron, OCZ, HGST[англ.][источник не указан 1020 дней]. Несмотря на то, что Toshiba Memory была и является одним из крупнейших производителей микросхем NAND, доля компании на рынке самих SSD составляла (на 2016) только 3,9 %.
С 2016 года Samsung выпускает «потребительские» SSD с микросхемами 3D NAND исключительно собственного производства[8].
Дефицит микросхем 2021 года привёл к «качелям цен» на SSD из-за их перепроизводства, а затем, на фоне резкого падения продаж SSD, к обвалу цен в конце 2022 года[28][29]. В 2023 году средняя цена на чипы TLC росла[30]; аналитики предсказывают подорожание твердотельных накопителей на рынке и в 2024 году[31].
В 2024 году в Китае был разработан новый контроллер SSD, поддерживающий все актуальные интерфейсы, включая PCIe 5.0. Он построен на открытой архитектуре RISC-V и почти не греется во время работы[32]
Remove ads
Форм-факторы и интерфейсы
- 2,5-дюймовые накопители SATA и mSATA
- Накопители mSATA и M.2 SATA
- Накопители mSATA и M.2 NVMe
- M.2 SATA слева, M.2 NVMe справа
- Разъём и крепёж накопителя M.2 NVMe на материнской плате компьютера
- Накопитель M.2 NVMe на материнской плате компьютера
Архитектура и функционирование
Суммиров вкратце
Перспектива
NAND SSD


Накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились во второй половине 90-х годов прошлого века, но начали уверенное завоевание рынка в связи с прогрессом в микроэлектронике и улучшением основных характеристик, в том числе стоимости за гигабайт. До середины 2000-х годов уступали традиционным накопителям — жёстким дискам — в скорости записи, но компенсировали это высокой скоростью доступа к произвольным блокам информации (скорость поиска, скорость начального позиционирования). С 2012 года уже выпускаются твердотельные накопители со скоростями чтения и записи, во много раз превосходящими возможности жёстких дисков[33].
К 2016 году были созданы микросхемы NAND с тремя различными по плотности хранения данных технологиями[8]:
- SLC (Single Level Cell), один бит на ячейку;
- MLC (Multi Level Cell) — два бита;
- TLC (Triple Level Cell) — три бита.
TLC обеспечивает наибольшую плотность хранения данных (втрое выше, чем планарная SLC), но имеет наименьший срок службы и меньшую надёжность, которые компенсируются производителями за счёт усложнения обработки данных[8].
Дальнейшее развитие технологии NAND — 3D TLC, в которой ячейки TLC размещены на кристалле в несколько слоёв. Например, Samsung SSD 850 EVO использует 3D-память с 32 слоями 3-битных ячеек TLC; производитель обещает для них надёжность на уровне устройств с планарными двухбитовыми MLC[8].
С 2017 года начали распространяться NAND QLC (Quad Level Cell — четыре бита)[34]. На начало 2022 года рекордной являлась выпущенная компанией Micron в 2021 году микросхема 3D NAND 7-го поколения с 176 слоями и частотой интерфейса 1,6 ГГц; при этом потребительским стандартом являются 96—144-слойные микросхемы[35].
RAM SSD
![]() | В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Эти накопители построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) наподобие RAM drive и характеризуются сверхбыстрым чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость за единицу объёма и низкая надёжность (опасность полной и безвозвратной потери данных при отключении питания), которая частично компенсируется наличием встроенного в устройство аккумулятора. Используются в основном для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.
Примерами таких накопителей являются I-RAM[англ.] и серия HyperDrive[англ.] (последние известны в Европе как ACARD ANS-9010 и 9010BA).
Другие
В 2015 году компании Intel и Micron заявили о выходе новой энергонезависимой памяти 3D XPoint[36]. Intel планировала выпустить SSD-накопители на основе 3D XPoint с использованием интерфейса PCI Express в 2016 году, которые были бы быстрее и выносливее, чем накопители на основе NAND. В марте 2017 года Intel выпустила первый SSD-накопитель с использованием технологии 3D XPoint — Intel Optane P4800X[37].
Remove ads
Преимущества SSD

![]() | В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
- Количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на порядок выше, чем у жёстких дисков, за счёт возможности одновременного запуска множества операций и более низкой латентности каждой операции (нет необходимости ожидать оборота диска перед доступом, а также ожидать наведения головки диска на нужную дорожку). Благодаря этому запуск программ и операционной системы происходит значительно быстрее.[источник не указан 935 дней]
- Скорость линейного чтения/записи выше, чем у распространённых жёстких дисков, и в ряде операций может быть близка к пропускной способности интерфейсов (SAS/SATA III 600 МБ/с). Твердотельные накопители могут реализовываться с более быстрыми интерфейсами: SATA III, PCI Express, NGFF (M.2, в вариантах с PCIe), SATA Express, NVM Express (стандарт на подключение SSD по шинам PCI Express), U.2.[источник не указан 935 дней]
- Малые габариты и вес. Для твердотельных накопителей были разработаны более компактные типовые размеры, например mSATA, U.2, NGFF (M.2)[источник не указан 935 дней].
- Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации.[источник не указан 935 дней]
- Отсутствие движущихся частей, отсюда:
- полное отсутствие шума;
- высокая механическая стойкость (кратковременно выдерживают удары с ускорением 1500 g).
- Низкое энергопотребление.
Remove ads
Недостатки
- Главный недостаток NAND SSD — ограниченное количество циклов перезаписи. Обычная (MLC, англ. multi-level cell «многоуровневые ячейки памяти») флеш-память позволяет записывать данные примерно три-десять тысяч раз (гарантированный ресурс); в самых дешёвых накопителях (USB, SD, µSD) может использоваться ещё более плотная память типа TLC[англ.] (MLC−3) с ресурсом порядка 1000 циклов или менее. Самые дорогостоящие виды памяти (SLC, англ. single-level cell «одноуровневые ячейки памяти») — имеют порядка сотен тысяч циклов перезаписи[39]. Для борьбы с неравномерным износом в высокопроизводительных (SATA и PCIe) SSD применяются схемы балансирования нагрузки (wear leveling): контроллер хранит информацию о том, сколько раз какие блоки перезаписывались, и при необходимости производит запись в менее изношенные блоки[40]. При выработке реального ресурса банков памяти накопитель может перейти в режим «только для чтения», что позволит скопировать данные[41][42]. При ряде вариантов использования, в том числе в бытовых компьютерах, при корректно работающих алгоритмах выравнивания износа, ресурс накопителей обычно серьёзно превышает заявленный производителем гарантийный срок службы, в среднем составляющий 5 лет[43];
- Скорость записи и ресурс SSD-накопителей значительно зависят от оставшегося свободного пространства. Причина в том, что максимальную скорость записи контроллер обеспечивает за счёт записи в режиме SLC, то есть 1 бит на ячейку, при этом же и выше ресурс. При дальнейшем заполнении SSD контроллер вынужден освобождать ячейки и перезаписывать в них максимальное количество данных (3-4 бита), при этом скорость записи резко падает, накопитель изнашивается. Поэтому для повышения как ресурса, так и скорости, желательно оставлять больше свободного места. В накопителях многих компаний для снижения остроты проблемы сохраняют недоступными для пользователя часть пространства, благодаря чему скорость записи снижается меньше, причём такие теневые блоки памяти используются для замещения выработавших ресурс[44].
- Цена гигабайта SSD-накопителей, несмотря на продолжающееся на протяжении многих лет быстрое снижение, всё ещё в несколько раз (6−7 для наиболее дешёвой флеш-памяти) выше цены гигабайта HDD[45] (в 2012−2015 годах: менее 0,1 $/ГБ в HDD[какой?] , от 1 до 0,5−0,4 $/ГБ в SSD[46]). Уравнивание стоимости за единицу объёма SSD и HDD прогнозируется приблизительно к 2019 году[47], к тому же стоимость SSD практически прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит не только от количества пластин и медленнее растёт при увеличении объёма накопителя[48]. В то же время небольшие по объёму SSD могут быть заметно дешевле, чем жёсткие диски наименьших объёмов, в которых всегда требуется использовать точные механические системы. Это позволяет удешевлять массовые ПК, дешёвые ноутбуки и встраиваемые системы[49];
- Модели накопителей минимального объёма обычно имеют немного более низкую производительность в ряде операций за счёт меньшего параллелизма[50].
- Производительность накопителя зачастую может временно снижаться при записи больших объёмов данных из-за исчерпании быстрого буфера записи, в процессе работы «сборщика мусора» или при обращении к более медленным страницам памяти[51].
- Применение в SSD-накопителях аппаратной команды TRIM для удаления информации может сильно осложнить или сделать невозможным восстановление удалённой информации соответствующими утилитами; c другой стороны, из-за выравнивания износа нет способа гарантированно удалять отдельные файлы с SSD: возможен лишь полный сброс всего накопителя при помощи команды «ATA Secure Erase»: команда TRIM помечает блоки как свободные, а момент физического стирания информации определяется прошивкой устройства[52].
- Высокая сложность или невозможность восстановления информации после электрических повреждений. Так как контроллер и носители информации в SSD находятся на одной плате, то при превышении или значительном перепаде напряжения могут повредиться несколько микросхем, что приводит к безвозвратной потере информации. Вероятность восстановления данных существует, если повреждён лишь контроллер[53].
- Низкая реальная помехозащищённость операций чтения из ячеек памяти и наличие сбойных ячеек, особенно при изготовлении по самым современным («тонким») техпроцессам, приводит к необходимости использования в контроллерах современных моделей всё более сложных внутренних кодов исправления ошибок: ECC, код Рида — Соломона, LDPC[54][55].
Remove ads
Вопросы надёжности
При условии использования в качестве загрузочного диска на серверах SSD имеют более высокую по сравнению с HDD надёжность при некоторых условиях, но это неверно при использовании SSD в качестве хранилища данных. (Компания Backblaze[англ.]проанализировала поломки SSD и HDD в течение 5 лет эксплуатации своих серверов. В их анализе SSD показали в три раза более низкий процент отказов при использовании носителя в качестве загрузочного. В отчёте Backblaze нет информации об отказоустойчивости дисков при частой перезаписи больших объёмов данных, также ничего нет про сохранность информации при её длительном хранении.)[56]
У SSD возможен выход из строя электронных компонентов, в том числе контроллера, отдельных микросхем NAND, либо пассивных компонентов. Среди некоторых моделей выходят из строя до 0,5−2 % SSD накопителей в течение первых лет эксплуатации[57]. В отличие от HDD, выход из строя SSD часто является внезапным[58].
Remove ads
Поддержка в различных ОС
Суммиров вкратце
Перспектива
Microsoft Windows и твердотельные накопители
В ОС Windows 7 была введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-накопителю дефрагментацию, технологии SuperFetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.[источник не указан 808 дней]
Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жёсткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключёнными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.[источник не указан 808 дней]
Рекомендуется также отключать Prefetch, индексирование, также теряется смысл гибернации, так как скорость загрузки без гибернации приближается к таковой из-за высокой скорости произвольного доступа[59].
Mac OS X и компьютеры Macintosh с твердотельными накопителями
Операционная система Mac OS X, начиная с версии 10.7 (Lion), полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти[60].
С 2010 года компания Apple представила компьютеры линейки Air, полностью комплектуемые только твердотельной памятью на основе флеш-NAND памяти. До 2010 года покупатель мог выбрать для данного компьютера обычный жёсткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жёстких дисков в пользу твердотельных накопителей.[источник не указан 808 дней]
Объём комплектуемой памяти в компьютерах серии Air составляет от 128 ГБ до 512 ГБ[61]. По данным J. P. Morgan, с момента представления до июня 2011 года было продано 420 тысяч компьютеров этой серии полностью на твердотельной флеш-NAND памяти[62].
11 июня 2012 года на основе флеш-памяти был представлен обновлённый модельный ряд профессиональных ноутбуков MacBook Pro с дисплеем Retina, в котором опционально можно было установить 768 ГБ флеш-памяти[источник не указан 3974 дня].
GNU/Linux и компьютеры данной платформы с твердотельными накопителями
Операционная система Linux, начиная с версии ядра 2.6.33, полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти при указании опции «discard» в настройках монтирования накопителя[63].
Remove ads
Перспективы развития
Главный недостаток SSD-накопителей на базе флеш-памяти — ограниченное число циклов перезаписи; при развитии технологий изготовления энергонезависимой памяти, возможно, будет устранён путём изготовления носителя информации по другим физическим принципам, например FeRam, ReRAM (resistive random-access memory) и др.[источник не указан 808 дней]
См. также
Примечания
Литература
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads