Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Киршбрауна о продолжении

Из Википедии, свободной энциклопедии

Remove ads

Теорема Киршбрауна о продолжении (иногда называется теорема Валентайн) — теорема о существовании продолжения липшицевой функции определённой на подмножестве евклидова пространства на всё пространство.

Формулировка

Пусть произвольное подмножество евклидова пространства , тогда произвольное короткое отображение можно продолжить до короткого отображения ; иначе говоря, существует короткое отображение такое, что .

Remove ads

Вариации и обобщения

Суммиров вкратце
Перспектива
  • Естественно обобщается на
  • Аналогичный результат для отбражений между сферами не верен, однако теорема остаётся верной для
    • Отображения из подмоножества сферы в полусферу той же кривизны.
    • Отображения из подмоножества сферы в сферу той же кривизны не меньшей размерности.
  • Аналогичный результат для банаховых пространств неверен.

Метрическая геометрия

  • Обобщение теоремы Киршбрауна на метрические пространства дано Лэнгом и Шрёдерем[1][2]
  • Любое короткое отображение определённое на подмножестве произвольного метрического пространства со значениями в инъективном пространстве допускает короткое продолжение на всё пространство. Это даёт другое обобщение теоремы на метрические пространства. К инъективным пространствам относятся вещественная прямая и метрические деревья а также -пространства.
  • Для метрических пространств со свойством удвоения выполняется слабый вариант теоремы Киршбрауна. А именно, если — метрическое пространство со свойством удвоения и и — банахово пространство, то любое -Липшицево отображение продолжается до -Липшицева отображения , где константа зависит только от параметра в свойстве удвоения.[3]
Remove ads

История

Была доказана в диссертации Мойжеша Киршбрауна (защищена в 1930)[4]. Позже эту теорему передоказал Фредерик Валентайн[5].

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads