Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Менелая
классическая теорема аффинной геометрии Из Википедии, свободной энциклопедии
Remove ads
Теоре́ма Менела́я, или теорема о трансверсалях, или теорема о полном четырёхстороннике, — классическая теорема аффинной геометрии.
Формулировка

Если точки и лежат соответственно на сторонах и треугольника или на их продолжениях[1], то они коллинеарны тогда и только тогда, когда
где , и обозначают отношения направленных отрезков.
Доказательство
Проведем через точку прямую, параллельную прямой , и обозначим через точку пересечения этой прямой с прямой . Поскольку треугольники и подобны (по двум углам), то
- .
Так как подобными являются также треугольники и , тем самым
- .
Исключая , получаем
- .
Возможны два расположения точек и : либо две из них лежат на соответствующих сторонах треугольника, а третья — на продолжении, либо все три лежат на продолжениях соответствующих сторон. Отсюда для отношений направленных отрезков имеем
Замечания
- В частности, из теоремы следует соотношение для длин отрезков:
Remove ads
Вариации и обобщения
- Тригонометрический эквивалент:
- , где все углы — ориентированные.
- В сферической геометрии теорема Менелая приобретает вид
- В геометрии Лобачевского теорема Менелая приобретает вид
Remove ads
История
Эта теорема доказывается в третьей книге «Сферики» Менелая Александрийского (около 100 года нашей эры). Менелай сначала доказывает теорему для плоского случая, а потом центральным проектированием переносит её на сферу. Возможно, что плоский случай теоремы рассматривался ранее в несохранившихся «Поризмах» Евклида.
Сферическая теорема Менелая была основным средством, с помощью которого решались разнообразные прикладные задачи позднеантичной и средневековой астрономии и геодезии. Ей посвящён ряд сочинений под названием «Книга о фигуре секущих», составленных такими математиками средневекового Востока, как Сабит ибн Корра, ан-Насави, ал-Магриби, ас-Сиджизи, ас-Салар, Джабир ибн Афлах, Насир ад-Дин ат-Туси.
Итальянский математик Джованни Чева в 1678 году предложил доказательство теоремы Менелая и родственной ей теоремы Чевы для плоского случая, основанное на рассмотрении центра тяжести системы из трёх точечных грузов.[2]
Применения
- Теорема Сальмона
- Многие теоремы проективной геометрии, например, теорема Паппа и теорема Дезарга, доказываются многократным применением теоремы Менелая.
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads