Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Менелая

классическая теорема аффинной геометрии Из Википедии, свободной энциклопедии

Remove ads

Теоре́ма Менела́я, или теорема о трансверсалях, или теорема о полном четырёхстороннике, — классическая теорема аффинной геометрии.

Формулировка

Thumb

Если точки и лежат соответственно на сторонах и треугольника или на их продолжениях[1], то они коллинеарны тогда и только тогда, когда

где , и обозначают отношения направленных отрезков.

Замечания

  • В частности, из теоремы следует соотношение для длин отрезков:
Remove ads

Вариации и обобщения

  • Тригонометрический эквивалент:
, где все углы — ориентированные.
Remove ads

История

Эта теорема доказывается в третьей книге «Сферики» Менелая Александрийского (около 100 года нашей эры). Менелай сначала доказывает теорему для плоского случая, а потом центральным проектированием переносит её на сферу. Возможно, что плоский случай теоремы рассматривался ранее в несохранившихся «Поризмах» Евклида.

Сферическая теорема Менелая была основным средством, с помощью которого решались разнообразные прикладные задачи позднеантичной и средневековой астрономии и геодезии. Ей посвящён ряд сочинений под названием «Книга о фигуре секущих», составленных такими математиками средневекового Востока, как Сабит ибн Корра, ан-Насави, ал-Магриби, ас-Сиджизи, ас-Салар, Джабир ибн Афлах, Насир ад-Дин ат-Туси.

Итальянский математик Джованни Чева в 1678 году предложил доказательство теоремы Менелая и родственной ей теоремы Чевы для плоского случая, основанное на рассмотрении центра тяжести системы из трёх точечных грузов.[2]

Применения

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads