Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Эйлера о треугольнике

в планиметрии — о расстоянии между центрами вписанной и описанной окружностей Из Википедии, свободной энциклопедии

Теорема Эйлера о треугольнике
Remove ads

Формула Эйлера — теорема планиметрии, связывает расстояние между центрами вписанной и описанной окружностей и их радиусами.

Thumb

Теорема названа в честь Леонарда Эйлера, который опубликовал её в 1765 году.[1] Однако тот же результат был получен ранее Уильямом Чапплом[англ.] в 1746 году[2].

Объяснение

Суммиров вкратце
Перспектива

Расстояние между центрами вписанной и описанной окружностей треугольника может быть определено по формуле

где  — радиус описанной,  — радиус вписанной окружности.

В 1969 году Георгий Александров дал развернутую формулу:

где  — стороны треугольника.

Замечания

  • Приведённую формулу можно переписать следующим образом
    .
или
  • Из теоремы следует так называемое неравенство Эйлера
    .
    • Существует более сильная форма этого неравенства[3]:с. 198, а именно:
где  — стороны треугольника.
  • Для сферического треугольника отношение радиуса описанной окружности к радиусу вписанной может быть меньше 2. Более того, для любого числа между 1 и 2 существует правильный сферический треугольник с отношением радиуса описанной к радиусу вписанной окружности, равным этому числу.
Remove ads

Вариации и обобщения

Суммиров вкратце
Перспектива

Для центра вневписанной окружности

Для вневписанных окружностей уравнение выглядит похоже:

где  — радиус одной из вневписанных окружностей, а  — расстояние от центра описанной окружности до центра этой вневписанной окружности[4][5][6].

Для многоугольников

Thumb
Во вписанно-описанном четырёхугольнике ABCD с центрами вписанной и вписанной окружностей соответственно I и О.
  • Для радиусов и соответственно описанной и вписанной окружностей данного вписанно-описанного четырёхугольника (см. рис.) и расстояния между центрами этих окружностей выполняется соотношение:
    ,
или эквивалентно,
Remove ads

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads