Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Эрдёша — Галлаи

Из Википедии, свободной энциклопедии

Remove ads

Теорема Эрдёша — Галлаи (критерий Эрдёша — Галлаи) — утверждение в теории графов, задающее условие, при котором конечной последовательности натуральных чисел можно сопоставить степени вершин некоторого графа. Такие последовательности чисел называются графическими. Теорема доказана венгерскими математиками Палом Эрдёшем и Тибором Галлаи (венг. Gallai Tibor)[1] в 1960 году.

Формулировка

Суммиров вкратце
Перспектива

Для формулировки утверждения вводятся следующие определения:

  • правильная последовательность — последовательность натуральных чисел длины , удовлетворяющая следующим условиям:
    1. ,
    2.  — чётное число;
  • графическая последовательность чисел — последовательность целых неотрицательных чисел такая, что существует граф, последовательность степеней вершин которого совпадает с ней.

Теорема утверждает, что правильная последовательность является графической тогда и только тогда, когда для каждого , , верно неравенство:

.
Remove ads

Алгоритмизация

Построить граф по графической последовательности можно полиномиальным алгоритмом, который строится на основании критерия Гавела — Хакими[2].

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads