Лучшие вопросы
Таймлайн
Чат
Перспективы
Теплоёмкость
термодинамическая величина Из Википедии, свободной энциклопедии
Remove ads
Теплоёмкость — количество теплоты, поглощаемой (выделяемой) телом в процессе нагревания (остывания) на 1 кельвин. Более точно, теплоёмкость — физическая величина, определяемая как отношение количества теплоты , поглощаемой/выделяемой термодинамической системой при бесконечно малом изменении её температуры , к величине этого изменения [1][2][3][4][5]:
Малое количество теплоты обозначается (а не ), чтобы подчеркнуть, что это не дифференциал параметра состояния (в отличие, например, от ), а функция процесса. Поэтому и теплоёмкость — это характеристика процесса перехода между двумя состояниями термодинамической системы[6], которая зависит и от пути процесса (например, от проведения его при постоянном объёме или постоянном давлении)[7][8], и от способа нагревания/охлаждения (квазистатического или нестатического)[7][9]. Неоднозначность в определении теплоёмкости[10] на практике устраняют тем, что выбирают и фиксируют путь квазистатического процесса (обычно оговаривается, что процесс происходит при постоянном давлении, равном атмосферному). При однозначном выборе процесса теплоёмкость становится параметром состояния[11][12] и теплофизическим свойством вещества, образующего термодинамическую систему[13].
Remove ads
Удельная, молярная и объёмная теплоёмкости
Суммиров вкратце
Перспектива
Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):
и молярной теплоёмкости (теплоёмкости одного моля вещества):
где — количество вещества в теле; — масса тела; — молярная масса. Молярная и удельная теплоёмкости связаны соотношением [14][15].
Объёмная теплоёмкость (теплоёмкость единицы объёма тела):
Remove ads
Теплоёмкость для различных процессов и состояний вещества
Суммиров вкратце
Перспектива
Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).
Теплоёмкость идеального газа
Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.
Молярная теплоёмкость при постоянном объёме:
где ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, — число степеней свободы молекулы[14][15].
Молярная теплоёмкость при постоянном давлении связана с соотношением Майера:
Теплоёмкость кристаллов

Существует несколько теорий теплоёмкости твёрдого тела:
- Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определённой точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
- Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости.
- Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.
Remove ads
Температурная зависимость
С ростом температуры теплоёмкость растёт у кристаллов, практически не меняется у жидкостей и газов.
При фазовом переходе происходит скачок теплоёмкости. Теплоёмкость вблизи самого фазового перехода стремится к бесконечности, поскольку температура фазового перехода остаётся постоянной при изменении теплоты.

Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads