Лучшие вопросы
Таймлайн
Чат
Перспективы
Теплота взрыва
Из Википедии, свободной энциклопедии
Remove ads
Теплота́ взры́ва (удельная энергия[1]) или теплота взрывчатого превращения[2] — количество тепла, выделяемое при взрывчатом превращении 1 моля или 1 кг взрывчатого вещества, является одной из существенных характеристик взрывчатого вещества[3]; это один из тепловых эффектов в теории взрывчатых веществ наряду с теплотой образования и теплотой сгорания взрывчатых веществ[4]. Количество тепла, выделяющееся при взрыве единицы массы (кг, г), называют удельной теплотой взрыва, при взрыве 1 моля вещества — молярной теплотой взрыва.
Также теплотой взрыва называют общий тепловой эффект химических реакций во фронте детонационной волны и реакций, длящихся при адиабатическом расширении продуктов взрыва по завершении реакций[3].
Единицы измерения: ккал/кг[3], кДж/кг[5], ккал/моль[3], Дж/моль[3], Дж/кг[3][6].
В формулах, как правило, обозначается Qв[6] или Qвзр[3][7].
Теплота взрыва используется для определения способностей того или иного взрывчатого вещества[6].
Remove ads
Расчет и определение теплоты взрыва
Суммиров вкратце
Перспектива
Теплоту взрыва определяют:
- экспериментально в калориметрических установках;
- расчётными способами (теоретически)[3][8][9].
Показатели теплоты взрыва, определяемые опытным путём, в настоящее время достигают точности 0,1 %[8]. В качестве типовых условий используют температуры 0 °C и 18 °C, давление 105 Па[9].
Теоретический расчёт теплоты взрыва возможен в случае наличия точной информации о составе продуктов взрыва, который, в свою очередь, определяется как характеристиками заряда, так и свойствами взрывчатого вещества, а также условиями взрывания[3][8][10]. Расчётный способ применяется в тех случаях, когда невозможно провести эксперимент или нужны теоретические данные ещё не синтезированного взрывчатого вещества или взрывчатой системы[8].
Встречающиеся численные значения теплот взрыва различных веществ принимаются как неизменные для каждого из них, в то же время на эти показатели влияет и характеристика заряда, и условия охлаждения, что приводит к изменению теплового эффекта реакции[11]. Таким образом, теплота взрыва — не постоянная величина, она колеблется в определённых пределах, например, у широко применяемых взрывчатых веществ — от 1000 до 1500 ккал/кг[3][12].
Виды теоретических расчётов теплоты взрыва
- Уравнение Малляра — Ле Шателье и Бринкли — Вильсона
Теоретический расчёт теплоты взрыва проводится по общим правилам уравнений распада взрывчатых веществ Малляра — Ле Шателье или Бринкли — Вильсона, особенно для взрывчатых веществ с небольшим отрицательным, нулевым или положительным кислородным балансом. Для веществ с отрицательным кислородным балансом применение уравнений Малляра — Ле Шателье недопустимо, так как результат не соответствует показателям, полученным опытным путём, поэтому применяется уравнение Бринкли — Вильсона, где результат больше соответствует экспериментальным теплотам, но даже в этом случае у тротила результаты завышены[13].
- Закон Гесса
Обычно для расчёта теплоты взрыва используют закон Гесса, как основанный на первом начале термодинамики, согласно которому общий тепловой эффект определяется начальным и конечным состоянием системы[9], то есть в отношении теории взрыва теплота взрыва должна составлять разницу между теплотой образования продуктов взрыва и теплотой образования взрывчатого вещества[3][7]:
- Qвзр = Σqпв – qвв,
где Qвзр — теплота взрыва, Σqпв — теплота образования продуктов взрыва, qвв — теплота образования взрывчатых веществ[7].
- Qвзр = Q2 – Q1,
где Qвзр — теплота взрыва, Q2 — теплота образования продуктов взрыва; Q1 — теплота образования взрывчатого вещества или его составных частей[3][9].
Remove ads
Общая информация
Суммиров вкратце
Перспектива
Показатель теплоты взрыва в определённых пределах зависит от толщины и материала оболочки, куда помещен заряд, а с увеличением плотности заряда значения теплоты взрыва повышается по линейному закону[13].
Теплота взрыва разделяется на:
- теплота детонации (или малая теплота взрыва) — минимальный средний показатель теплоты, определяющий детонационный режим, выделяясь в детонационной волне и передаваясь ей полностью; её экспериментальное определение до настоящего времени затруднено. Может изменяться от давления в детонационной волне[10][13].
- фугасная теплота — теплота взрыва в массивной оболочке. Промежуточная между теплотой детонации и максимальной теплотой. Зависит от плотности заряда и толщины оболочки; изменения зависят от давления внешней среды и газодинамических условий процесса расширения продуктов взрыва[10][13].
- максимальная теплота — является константой взрывчатых веществ ввиду того, что определяется исключительно составом взрывчатого вещества, вне зависимости от начального и конечного размеров состояния продуктов взрыва. Позволяет увидеть предельные возможности взрывчатого вещества, в случае, если необходим результат полного превращения химической энергии в тепловую[10][13].
Для установления фугасной теплоты взрывчатого вещества на практике используются следующие приёмы:
- метод свинцовой бомбы;
- метод эквивалентных зарядов;
- метод баллистического маятника;
- метод баллистической мортиры;
- определение фугасной теплоты по объёму воронки выброса;
- измерение параметров воздушных ударных волн[6].
Примеры влияния на показатели теплоты взрыва
В случаях детонации плотных зарядов взрывчатых веществ с отрицательным кислородным балансом, которые помещены в массивную оболочку, наблюдается дополнительное выделение тепла без увеличения скорости детонации. Так, при взрыве тротила, спрессованного в латунную оболочку толщиной 4 мм, выделяется на 25 % больше энергии (1080 кал/г), чем при взрыве аналогичного по весу и плотности заряда тротила в слабой стеклянной оболочке толщиной 2 мм (840 кал/г). Такой же эффект наблюдается у пикриновой кислоты, тетрина, гексогена. При этом увеличение теплоты взрыва за счет уплотнения и оболочки отслеживается только у взрывчатых веществ с отрицательным кислородным балансом, у других смесевых взрывчатых веществ с небольшим, нулевым или положительным кислородным балансом (ТЭН, нитроглицерин) данный эффект не прослеживается[3][13].
Дополнительное выделение теплоты взрыва может зависеть от медленного протекания химических реакций генераторного газа, не усиливающих детонационную волну[3][7][13].
Росту показателя теплоты взрыва способствует приращивание, измеренного для свободных и утяжеленных зарядов импульса детонационной волны[13].
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads