Лучшие вопросы
Таймлайн
Чат
Перспективы
Факторизация графа
Из Википедии, свободной энциклопедии
Remove ads
Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.


Remove ads
1-факторизация
Суммиров вкратце
Перспектива
Если граф 1-факторизуем (то есть имеет 1-факторизацию), то он должен быть регулярным графом. Однако не все регулярные графы являются 1-факторизуемыми. k-регулярный граф является 1-факторизуемым, если его хроматический индекс равен k. Примеры таких графов:
- Любой регулярный двудольный граф[1][2]. С помощью теоремы Холла о свадьбах можно показать, что k-правильный двудольный граф содержит совершенное сочетание. Можно тогда удалить совершенное паросочетание и (k − 1)-регулярный двудольный граф и продолжить тот же процесс рекурсивно.
- Любой полный граф с чётным числом вершин (см. ниже)[3].
Однако имеются k-регулярные графы, хроматический индекс которых равен k + 1, и эти графы не 1-факторизуемы. Примеры таких графов:
- Любой регулярный граф с нечётным числом вершин.
- Граф Петерсена.
Полные графы

1-факторизация полного графа соответствует разбиению на пары в круговых турнирах. 1-факторизация полных графов является специальным случаем теоремы Бараньяи относительно 1-факторизации полных гиперграфов.
Один из способов построения 1-факторизации полного графа помещает все вершины, кроме одной, на окружности, образуя правильный многоугольник, оставшаяся же вершина помещается в центр окружности. При этом расположении вершин процесс построения 1-фактора заключается в выборе ребра e, соединяющего центральную вершину с одной из вершин на окружности, затем выбираются все рёбра, перпендикулярные ребру e. 1-факторы, построенные таким образом, образуют 1-факторизацию графа.
Число различных 1-факторизаций равно 1, 1, 6, 6240, 1225566720, 252282619805368320, 98758655816833727741338583040, … (последовательность A000438 в OEIS).
Гипотеза об 1-факторизации
Пусть G — k-регулярный граф с 2n вершинами. Если k достаточно велико, известно, что G должен быть 1-факторизуем:
- Если , то G является полным графом , а потому 1-факторизуем (см. выше).
- Если , то G можно получить путём удаления совершенного паросочетания из . Снова G является 1-факторизуемым.
- Четвинд и Хилтон[4] показали, что при граф G 1-факторизуем.
Гипотеза об 1-факторизации[5] является давно выдвинутой гипотезой, утверждающей, что значение достаточно велико. Точная формулировка:
- Если n нечётно и , то G 1-факторизуем. Если n чётно и , то G 1-факторизуем.
Гипотеза сильного заполнения[англ.] заключает в себе гипотезу об 1-факторизации.
Совершенная 1-факторизация
Совершенная пара 1-факторизаций — это пара 1-факторов, объединение которых даёт гамильтонов цикл.
Совершенная 1-факторизация (P1F) графа — это 1-факторизация, имеющая свойство, что любая пара 1-факторов является совершенной парой. Совершенная 1-факторизация не следует путать с совершенным паросочетанием (которое также называют 1-фактором).
В 1964 году Антон Котциг высказал предположение, что любой полный граф , где , имеет совершенную 1-факторизацию. Известно, что следующие графы имеют совершенные 1-факторизации[6]:
- Бесконечное семейство полных графов , где p — нечётное простое (Андерсон и Накамура, независимо),
- Бесконечное семейство полных графов , где p — нечётное простое
- спорадически другие графы, включая , где . Есть и более свежие результаты здесь.
Если полный граф имеет совершенную 1-факторизацию, то полный двудольный граф также имеет совершенную 1-факторизацию[7].
Remove ads
2-факторизация
Если граф 2-факторизуем, то он должен быть 2k-регулярным для некоторого целого k. Юлиус Петерсен показал в 1891, что это необходимое условие является также достаточным — любой 2k-регулярный граф является 2-факторизуемым[8].
Если связный граф является 2k-регулярным и имеет чётное число рёбер, он также может быть k-факторизуем путём выбора двух факторов, являющихся чередующимися рёбрами эйлерова цикла[9]. Это относится только к связным графам, несвязные контрпримеры содержат несвязное объединение нечётных циклов или копий графа K2k+1.
Remove ads
Примечания
Литература
Литература для дальнейшего чтения
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads