Лучшие вопросы
Таймлайн
Чат
Перспективы
Формула Клаузиуса — Моссотти
Из Википедии, свободной энциклопедии
Remove ads
Фо́рмула Кла́узиуса — Моссо́тти описывает связь статической диэлектрической проницаемости диэлектрика с поляризуемостью составляющих его частиц[1]. Получена независимо друг от друга в 1850 г. Оттавиано Ф. Моссотти[2] и в 1879 г. Рудольфом Ю. Э. Клаузиусом[3]. В случаях, когда вещество состоит из частиц одного сорта, в Гауссовой системе единиц формула имеет вид:
где — диэлектрическая проницаемость, — количество частиц в единице объёма, а — их поляризуемость.
Уточним, что под поляризуемостью частицы здесь понимается коэффициент , связывающий напряжённость постоянного электрического поля , действующего на частицу, с дипольным моментом , образующимся у частицы под действием этого поля[4]:
Поскольку предполагается, что поле во времени не изменяется, то его действие способно вызывать смещения частиц как с малой массой — электронов, так и с большой — ионов и атомов. Соответственно, в данном случае поляризуемость включает в себя электронную, ионную и атомную поляризуемости.
Формулу записывают также в виде:
где — молекулярная масса вещества, — его плотность, а — постоянная Авогадро.
Если вещество состоит из частиц нескольких сортов с поляризуемостями и объёмными концентрациями , то формула принимает вид:
Формула применима только по отношению к неполярным диэлектрикам, то есть к таким, частицы которых собственным дипольным моментом не обладают. Для применимости формулы необходимо также, чтобы диэлектрик был изотропным.
Remove ads
Вывод
Суммиров вкратце
Перспектива
Макроскопическую поляризацию можно представить как сумму индуцированных дипольных моментов в рассматриваемом объеме, деленную на объем (как плотность дипольного момента):
где - концентрация частиц , - поляризуемость, - локальное электрическое поле, действующее на атом или молекулу.
Запишем связь поляризации и среднего макроскопического поля через диэлектрическую восприимчивость и диэлектрическую проницаемость :
и получим следующее равенство:
Теперь необходимо связать локальное поле со средним.
Заметим, что для разреженных газов локальное поле равно внешнему, , и тогда:
Для диэлектрика локальное поле не равно приложенному внешнему полю, поскольку соседние индуцированные диполи также создают электрическое поле.
- : внешнее электрическое поле
- : электрическое поле окружения, созданное поляризацией за пределами сферы Лоренца.
Таким образом, локальное поле:
При подстановке в равенство выше:
в итоге получаем формулу Клаузиса-Моссотти:
Remove ads
Обсуждение
Суммиров вкратце
Перспектива
Приближённый характер присущ формуле изначально, поскольку приближённой является модель диэлектрика, используемая при её выводе. Действительно, в общем случае нет оснований полагать, что диэлектрик состоит из отдельных частиц с поляризуемостями, присущими им как таковым. Так, в диэлектриках с ковалентными связями электроны могут принадлежать сразу двум атомам. В ионных кристаллах такого обобществления не происходит, но поляризуемости ионов в кристаллах могут существенно отличаться от их поляризуемостей в свободном состоянии.
Точность формулы зависит от агрегатного состояния среды, для описания которой она используется. С наиболее высокой точностью формула справедлива для газов и жидкостей.
Обобщением формулы Клаузиуса — Моссотти на случай полярных диэлектриков, частицы которых обладают дипольным моментом и в отсутствие поля, является формула Ланжевена – Дебая[5].
В случае оптических частот электромагнитного поля, соответствующих видимому и ультрафиолетовому излучению, смещения ионов и атомов под действием поля происходить не успевают. Поэтому на формирование диэлектрической проницаемости влияют только электронные поляризуемости частиц. Соответственно, в этом случае используется аналог формулы Клаузиуса — Моссотти, справедливый для оптического излучения, — формула Лоренца — Лоренца.
В настоящее время формула Клаузиуса — Моссотти используется не только в её первоначальном виде, формулу продолжают развивать и совершенствовать для повышения точности получаемых результатов и расширения сферы её применения[6].
Remove ads
См. также
Примечания
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads