Лучшие вопросы
Таймлайн
Чат
Перспективы
Формула Кубо
уравнение, которое выражает линейный отклик наблюдаемой величины от нестационарных возмущений Из Википедии, свободной энциклопедии
Remove ads
Формула Кубо представляет собой уравнение, которое выражает линейный отклик наблюдаемой величины в зависимости от нестационарного возмущения. Названа в честь Рёго Кубо, который впервые представил формулу в 1957 году[1][2].
С помощью формулы Кубо можно вычислить зарядовую и спиновую восприимчивости систем электронов как отклик на приложенные электрические и магнитные поля. Также можно рассчитать реакцию на внешние механические силы и вибрации.
Remove ads
Общая формула Кубо
Суммиров вкратце
Перспектива
Рассмотрим квантовую систему, описываемую (не зависящим от времени) гамильтонианом . Среднее значение физической величины, описываемое оператором , можно оценить как:
куда — статистическая сумма. Предположим теперь, что в момент времени на систему начинает действовать внешнее возмущение. Это возмущение описывается дополнительной временной зависимостью гамильтониана: где — функция Хевисайда, которая равна 1 для положительных моментов времени и 0 в противном случае и — эрмитово и определено для всех t, таким образом, что для положительного , обладает полным набор действительных собственных значений но эти собственные значения могут изменяться со временем.
Однако теперь снова можно найти временную эволюцию матрицы плотности из правой части выражения для статистической суммы и оценить математическое ожидание как
Временная зависимость состояний полностью определяется уравнением Шредингера что соответствует картине Шредингера. Но поскольку рассматривается как небольшое возмущение, то удобно использовать представление картины взаимодействия, в низшем нетривиальном порядке. Зависимость от времени в этом представлении даётся выражением где по определению для всех t и ,
В линейном порядке в , получим . Таким образом, среднее от с точностью до линейного порядка по возмущению равно
Угловые скобки означают равновесное среднее по невозмущённому гамильтониану Следовательно, для первого порядка теории возмущения, среднее включает только собственные функции нулевого порядка, что обычно и происходит в теории возмущений. Это устраняет все сложности, которые в противном случае могли бы возникнуть для моментов времени .
Вышеприведенное выражение верно для любых операторов. (см. также Вторичное квантование)[3].
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads