Лучшие вопросы
Таймлайн
Чат
Перспективы

Эффективная оценка

Из Википедии, свободной энциклопедии

Remove ads

Эффекти́вная оце́нка в математической статистике — наилучшая оценка в классе в среднеквадратичном смысле.[1]

Определение

Оценка параметра называется эффективной оценкой в классе , если для любой другой оценки выполняется неравенство для любого .

Особую роль в математической статистике играют несмещенные оценки. Если несмещенная оценка является эффективной оценкой в классе несмещенных и дисперсия совпадает с оценкой в неравенстве Крамера-Рао, то такую статистику принято называть просто эффективной.

Remove ads

Единственность

Эффективная оценка в классе , где — некоторая функция, существует и единственна с точностью до значений на множестве , вероятность попасть в которое равна нулю ().

Remove ads

Асимптотическая эффективность

Суммиров вкратце
Перспектива

Некоторые оценки могут быть не самыми эффективными на малых выборках, однако могут обладать преимуществами на больших выборках. Обычно рассматриваются состоятельные оценки, дисперсия которых с увеличением объема выборки стремится к нулю. Поэтому сравнить такие оценки можно по скорости сходимости, то есть фактически по дисперсии (ковариационной матрицы) случайной величины (вектора) . В частности, асимптотически нормальная оценка

является асимптотически эффективной, если асимптотическая ковариационная матрица V минимальна в данном классе оценок.

См. также

Примечания

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads