Лучшие вопросы
Таймлайн
Чат
Перспективы

B-сплайн

Из Википедии, свободной энциклопедии

Remove ads

B-сплайн — сплайн-функция, имеющая наименьший носитель для заданной степени, порядка гладкости и разбиения области определения. Фундаментальная теорема устанавливает, что любая сплайн-функция для заданной степени, гладкости и области определения может быть представлена как линейная комбинация B-сплайнов той же степени и гладкости на той же области определения.[1] Термин B-сплайн был введён И. Шёнбергом и является сокращением от словосочетания «базисный сплайн».[2] B-сплайны могут быть вычислены с помощью алгоритма де Бура, обладающего устойчивостью.

В системах автоматизированного проектирования и компьютерной графике термин B-сплайн часто описывает сплайн-кривую, которая задана сплайн-функциями, выраженными линейными комбинациями B-сплайнов.

Remove ads

Определение

Когда узлы равноудалены друг от друга, говорят, что B-сплайн является однородным, в противном случае его называют неоднородным

Замечания

Суммиров вкратце
Перспектива

Когда количество узлов совпадает со степенью сплайна, B-сплайн вырождается в кривую Безье. Форма базисной функции определяется расположением узлов. Масштабирование или параллельный перенос базисного вектора не влияет на базисную функцию.

Сплайн содержится в выпуклой оболочке его опорных точек.

Базисный сплайн степени n

не обращается в нуль только на промежутке [ti, ti+n+1], то есть

Другими словами, изменение одной опорной точки влияет только на локальное поведение кривой, а не на глобальное, как в случае кривых Безье.

Базисная функция может быть получена из полинома Бернштейна

P-сплайн

P-сплайн является модификацией B-сплайна и отличается использованием штрафной функции. Её введение позволяет использовать B-сплайновое сглаживание с весовыми коэффициентами для подгонки кривой в сочетании с дополнительным повышением гладкости и исключением переобучения на основе штрафной функции[3].

Remove ads

См. также

Ссылки

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads