Лучшие вопросы
Таймлайн
Чат
Перспективы
Sgn
математическая функция, показывающая знак действительного числа или направление комплексного числа Из Википедии, свободной энциклопедии
Remove ads
sgn (сигнум, от лат. signum — знак) — кусочно-постоянная функция вещественного аргумента. Обозначается . Определяется следующим образом:

Функция не является элементарной.
Часто используется представление
При этом производная модуля в нуле, которая, строго говоря, не определена, доопределяется средним арифметическим соответствующих производных слева и справа.
Функция применяется в теории обработки сигналов, в математической статистике и других разделах математики, где требуется компактная запись для индикации знака числа.
Remove ads
История и обозначения
Функцию ввёл Леопольд Кронекер в 1878 году, сначала он обозначал её иначе: . В 1884 году Кронекеру понадобилось в одной статье использовать, наряду с , функцию «целая часть», которая также обозначалась квадратными скобками. Во избежание путаницы Кронекер ввёл обозначение , которое (за вычетом точки перед аргументом) и закрепилось в науке. Иногда функцию обозначают как .
Remove ads
Свойства функции
- Область определения: .
- Область значений: .
- Гладкая во всех точках, кроме нуля.
- Функция нечётна.
- Точка является точкой разрыва первого рода, так как пределы справа и слева от нуля равны и соответственно.
- и для . Иначе говоря,
- при .
- , где — дельта-функция Дирака.
- .
- .
Remove ads
Вариации и обобщения
- Представление
- даёт одно из возможных обобщений функции сигнум на множество комплексных чисел. При этом , где — аргумент комплексного числа . При результатом функции является точка единичной окружности, ближайшая к числу . Смысл данного обобщения заключается в том, чтобы посредством радиус-вектора единичной длины показать направление на комплексной плоскости, отвечающее числу . Это же направление в полярных координатах задаёт угол . Неопределённое направление, отвечающее числу , выражается нулевым значением функции. Например, таким образом функция signum определена в стандартной библиотеке комплексных чисел в языке Haskell[1].
- Другой вариант обобщения функции, обозначаемый как , определяется следующим образом:
- Данное обобщение используется, например, в приложениях Mathcad и Maple[2].
Remove ads
См. также
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
