Partial differential equation

differential equation that contains unknown multivariable functions and their partial derivatives From Wikipedia, the free encyclopedia

Partial differential equations (abbreviated as PDEs) are a kind of mathematical equation. They are related to partial derivatives, in that obtaining an antiderivative of a partial derivative involves integration of partial differential equations.

Numerical methods

Since PDEs have appeared in mathematics and physics, many scientists have studied methods to solve them. But unfortunately, no one could establish methods to solve any kind of PDE. Therefore, numerical methods for PDEs (such as the finite element method) are widely studied since the appearance of computers.[1][2][3]

People who studied about partial differential equations

Literature

  • Partial Differential Equations (Graduate Studies in Mathematics) Lawrence C. Evans, American Mathematical Society, 2010/04/.
  • Egorov, Y. V., & Shubin, M. A. (2013). Foundations of the classical theory of partial differential equations. Springer Science & Business Media.
  • Olver, P. J., Introduction to partial differential equations. Berlin: Springer.
  • Partial Differential Equations I-III (Applied Mathematical Sciences) Michael Taylor, Springer.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.