standard form of axiomatic set theory From Wikipedia, the free encyclopedia
Zermelo–Fraenkel set theory (abbreviated ZF) is a system of axioms used to describe set theory. When the axiom of choice is added to ZF, the system is called ZFC. It is the system of axioms used in set theory by most mathematicians today.
After Russell's paradox was found in the 1901, mathematicians wanted to find a way to describe set theory that did not have contradictions. Ernst Zermelo proposed a theory of set theory in 1908. In 1922, Abraham Fraenkel proposed a new version based on Zermelo's work.
An axiom is a statement which is accepted without question, and which has no proof. ZF traditionally contains eight axioms. Two of these axioms (specification and pairing) are redundant, they can be deduced from the axiom schema of replacement. Nevertheless, these extra axioms are useful; replacement is rarely used for proving theorems in common mathematics.
The axiom of choice says that for any set X, if the empty set is not an element of X then there exists a function f whose domain is X, such that for each element e of X, f(e) is an element of e. For example, given the set (call it A), the axiom of choice asserts the existence of a function that "picks" exactly one element from each of the elements of A (in this case A has two elements), but it doesn't tell us what combination it is. For finite sets, this axiom can be proved from the other axioms, but not for infinite sets.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.