Oligonukleotid

From Wikipedia, the free encyclopedia

Remove ads

Oligonukleotidy sú krátke molekuly RNA alebo DNA, ktoré majú široké využitie v genetickom testovaní, výskume a forenzných vedách. Sú to oligoméry nukleotidov. Bežne sa vyrábajú v laboratóriu pomocou chemickej syntézy na pevnej fáze.[1] Tieto krátke úseky nukleových kyselín je možné vyrobiť ako jednovláknové molekuly s požadovanou sekvenciou, takže sú veľmi dôležité pre syntézu umelých génov, polymerázovú reťazovú reakciu (PCR), sekvenovanie DNA, molekulárne klonovanie a i ako molekulárne sondy. V prírode sú oligonukleotidy zvyčajne prítomné ako malé molekuly RNA, ktorých úlohou je regulácia expresie génov (napríklad mikroRNA),[2] alebo ako medziprodukty rozkladu väčších molekúl nukleových kyselín.

Oligonukleotidy sú charakteristické svojou sekvenciou (poradím) nukleotidov, z ktorých sa skladajú. Dĺžka oligonukleotidu je zvyčajne popísaná koncovkou „-mér“ (z gréckeho meros, „časť“). Napríklad oligonukleotid, ktorý má šesť nukleotidov (nt), sa označuje ako hexamér a oligonukleotid s dĺžkou 25 nt sa označuje ako „25-mér“. Oligonukleotidy sa ľahko viažu (na základe svojej sekvencie) na komplementárne oligonukleotidy, DNA alebo RNA, čím vznikajú duplexy alebo, menej často, hybridy.Táto vlastnosť tvorí základ ich použitia ako molekulárnych sond na detekciu konkrétnych sekvencií DNA alebo RNA. Príkladmi postupov, ktoré využívajú oligonukleotidy, sú DNA čipy (tiež známe ako DNA microarray), Southernov blotting, ASO analýza, fluorescentná in situ hybridizácia (FISH), PCR a syntéza umelých génov.

Oligonukleotidy sa skladajú z ribonukleotidov alebo deoxyribonukleotidov a môžu mať upravenú cukor-fosfátovú kostru, čím je možné dosiahnuť rôzne farmakologické efekty. Pri použití deoxyribonukleotidov je možné upraviť i 2' pozíciu na sacharide. Tieto úpravy dávajú oligonukleotidov nové vlastnosti a hrajú kľúčovú úlohu pri antisense terapii.[3][4]

Remove ads

Syntéza

Bližšie informácie v hlavnom článku: Syntéza oligonukleotidov

Oligonukleotidy sú chemicky syntetizované pomocou stavebných kameňov (nukleotidov), chránených fosforamiditov prírodných alebo chemicky modifikovaných nukleozidov alebo v menšej mierez nenukleozidových zlúčenín. Tvorba oligonukleotidového reťazca prebieha v smere od 3' konca ku 5' koncu opakovaním rutinného postupu, tzv. „syntetického cyklu“. Jeden syntetický cyklus vedie k naviazaniu jedného oligonukleotidu k vzniknutého reťazcu. Tento proces je čiastočne limitovaný tým, že reakcie majú výťažok nižší než 100 % a že v procese môžu vznikať vedľajšie produkty. Všeobecne sú sekvencie oligonukleotidov relatívne krátke (13-25 nukleotidov).[5] Maximálna dĺžka syntetického oligonukleotidu len sťažka prekročí dĺžku 200 nukleotidov. Na izoláciu produktov s požadovanou sekvenciou je možné použiť HPLC alebo iné metódy.

Remove ads

Chemické úpravy

Thumb
Eteplirsen je príkladom oligonukleotidu. Obsahuje chemicky upravnú cukorfosfátovú kostru.

Jednou z prvých komplikácii ASO terapie bola tvorba chemicky stabilných krátkych oligonukleotidov. Prírodné oligonukleotidy sa ľahko rozkladajú pôsobením nukleáz, teda enzýmov, ktoré štepia nukleotidy, hojne prítomných vo všetkých druhoch buniek.[6] Krátke oligonukleotidy majú slabšie väzbové afinity, čo prispieva k ich rozkladu in vivo.[7]

Úpravy cukor-fosfátovej kostry

Organotiofosfátové nukleozidové (PS) analógy nukleotidov dávajú oligonukleotidom prospešné vlastnosti. Medzi ne patrí diastereomérická identifikácia každého nukleotidu a možnosť jednoducho sledovať reakcie, ktorých sa účastnia fosforotioátové nukleotidy, čo je u syntézy oligonukleotidov užitočné.[8] PS úprava takisto chráni oligonukleotidy pred nežiadaným rozkladom enzýmami.[9] Úprava nukleotidovej kostry je bežne používaná, pretože je u väčšiny nukleotidov dosiahnuteľná relatívne jednoducho a presne.[8] Fluorescentné modifikácie na 5' a 3' koncoch oligonukleotidov boli použité na určenie štruktúry oligonukleotidov, dynamiky a interakcie s okolím.[10]

Úpravy sacharidového kruhu

Ďalšou úpravou, ktorá je užitočná pre použitie v medicíne, je úprava 2' pozície cukru. Úprava tejto pozície zvyšuje efektivitu viazania oligonukleotidov pomocou zlepšenia ich viazacích schopností, hlavne u antisense oligonukleotidovej terapie.[7] Takisto znižuje nešpecifické viazanie proteínov, čím sa zvyšuje presnosť viazania špsecifických bielkovín.[7] Dve bežne používané úpravy sú 2’-O-metyl a the 2’-O-metoxyetyl.[7] Takisto boli popísané fluorescentné modifikácie nukleobáz.[10]

Remove ads

Antisense oligonukleotidy

Bližšie informácie v hlavnom článku: Antisense terapia

Antisense oligonukleotidy (ASO) sú jednovláknové molekuly DNA alebo RNA, ktoré sú komplementárne k zvolenej sekvencii.[5] V prípade antisense RNA je ich úlohou prevencia translácie nektorých mRNA tým, že sa na ne oligonukleotid naviaže, čo sa nazýva hybridizácia.[11] ASO je možné použiť na zameranie konkrétnej komplementárnej RNA (kódujúcej i nekódujúcej). Ak dôjde k viazaniu, hybrid môže byť degradovaný enzýmom RNázou H.[11] RNáza H je enzým, ktorý hydrolyzuje RNA a keď sa využije pri aplikácii antisense oligonukleotidov, dochádza k zníženiu expresie mRNA o 80-95 %.[5]

Použitie morfolínové antisense oligonukleotidov na zníženie expresie génov u stavovcov, čo je aktuálne štandardnou technikou používanou v vývojovej biológii a takisto sa používa pri štúdiách upravenej expresie génov a funkcie génov, bolo prvýkrát vyvinuté Janet Heasmanovou na žabách Xenopus.[12] Medzi lieky so štruktúrou morfolína, ktoré sú povolené americkou FDA, patria eteplirsen a golodirsen. Antisense oligonukleotidy boli takisto použité na inhibíciu replikácie chrípkového vírusu.[13][14]

Neurodegeneratívne poruchy, ktoré vznikajú kvôli jedinému mutantnému proteínu, sú dobrými cieľmi pre antisense nukleotidovú terapiu vďaka ich schopnosti zacieliť a upraviť veľmi špecifické sekvencie RNA s vysokou selektivitou.[15] Mnohé choroby, napríklad Huntingotonova choroba, Alzheimerova choroba, Parkinsonova choroba a amyotrofná laterálna skleróza (ALS), boli prepojené so zmenami DNA, z ktorých vznikajú nesprávne sekvencie RNA a tým vznikajú chybne preložené proteíny s toxickými fyziologickými vlastnosťami.[16]

Analytické techniky

Chromatografia

Alkylamidy je možné použiť v chromatografii ako stacionárnu fázu.[17] Tieto fázy boli skúmané pre použitie na separáciu oligonukleotidov.[18] Iónová párová everzne fázová vysokoúčinná kvapalnová chromatografia sa používa na separáciu a analýzu oligonukleotidov po ich automatizovanej syntéze.[19]

Hmotnostná spektrometria (MS)

Zmes kyseliny 5-metoxysalicylovej a spermínu sa dá použiť ako matrix pre analýzu oligonukleotidov pomocou MALDI MS.[20] Elektrosprejová ionizačná hmotnostná spektroskopia (ESI-MS) je takisto silným nástrojom na charakterizáciu hmotnosti oligonukleotidov.[21]

DNA microarray

DNA čipy (microarray) sú užitovné analytické aplikácie oligonukleotidov. V porovnaní so štandardnými cDNA mčipmi majú čipy založené na oligonukleotidoch lepšie definovanú špecificitu hybridizácie a schopnosť merať/detegovať prítomnosť a prevahu alternatívne zostrihnutých alebo polyadenylovaných sekvencií.[22] Jeden poddruh DNA čipov je možné popísať ako substráty (nylon, sklo...), na ktoré sa s vysokou hustotou viažu oligonukleotidy.[23] Existuje mnoho aplikácié DNA mikročipov v živých vedách.

Remove ads

Referencie

Pozri aj

Externé odkazy

Zdroj

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads