அண்ணளவாக்கக் கோட்பாடு

From Wikipedia, the free encyclopedia

Remove ads

கணிதத்தில் அண்ணளவாக்கக் கோட்பாடு (approximation theory) என்பது, எவ்வாறு சார்புகளை, அவற்றிலும் எளிமையான சார்புகளாக கூடுமான அளவுக்கு அண்ணளவாக்கலாம் என்பது தொடர்பானது. எவ்வளவு எளிமை என்பதும், எந்த அளவுக்கு என்பதும் பயன்பாட்டுத் தேவையில் தங்கியுள்ளது. இதனுடன் நெருக்கமாகத் தொடர்புடைய இன்னொன்று பொதுமைப்படுத்திய பூரியர் தொடர் மூலம் சார்புகளை அண்ணளவாக்குவது ஆகும்.

Remove ads

பயன்பாடுகள்

குறிப்பான கவனத்துக்குரிய ஒரு பிரச்சினை, கணினியில் அல்லது கணிப்பானில் (எ.கா. சைன் (முக்கோணவியல்)) செய்யக்கூடிய செயற்பாடுகளைப் பயன்படுத்திச் சார்புகளை அண்ணளவாக்கம் செய்வது ஆகும். இதன்மூலம், உண்மையான சார்புகளுக்கு மிக நெருக்கமான விளைவுகளைப் பெற்றுக்கொள்ள முடியும். இது பொதுவாக, பல்லுறுப்புக்கோவை அல்லது விகிதமுறு அண்ணளவாக்கத்தின் மூலம் செய்யப்படுகிறது. இதன் நோக்கம் உண்மையான சார்புக்கு எவ்வளவு நெருக்கமாக முடியுமோ அவ்வளவு நெருக்கமான அண்ணளவாக்கத்தைப் பெறுவது, குறிப்பாகக் கணினியின் அடிப்படையான மிதவைப் புள்ளிக் கணக்கீட்டுக்கு நெருக்கமான துல்லியத்தன்மையைப் பெறுவது ஆகும்.

சைன் மதிப்பை முடிவிலாத் தொடரின் வாயிலாக கணிப்பது

Thumb
ஆதியை மையமாகக் கொண்ட முழு வட்டத்திற்கு, சைன் சார்பு (நீலம்), அதன் டெயிலரின் பல்லுறுப்புக்கோவையால் (படி-7) (பிங்க்) தோராயப்படுத்தப்பட்டுள்ளது.

கணினியில் சைன், முடிவிலாத் தொடரின் வாயிலாக, 10 அல்லது 15 அண்ணளவாக்க பாகங்கள் (terms) வரை கணக்கிட்டு கூட்டியும் சைன் மதிப்பை பெரலாம்.

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads