ஆய்லர்-மெக்லாரின் வாய்பாடு

From Wikipedia, the free encyclopedia

Remove ads

கணிதத்தில் ஆய்லர்-மெக்லாரின் வாய்பாடு (Euler–Maclaurin formula) என்பது, ஒரு தொகையீட்டுக்கும் அதனுடன் நெருங்கிய தொடர்புள்ள ஒரு கூட்டுகைக்கும் இடையேயுள்ள வித்தியாசத்தைக் காணவுதவும் ஒரு வாய்பாடு ஆகும். இவ்வாய்பாடு, முடிவுறு கூட்டுத்தொகைகளைக் கொண்டு தொகையீடுகளை தோராயப்படுத்துவதற்குப் பயன்படுகிறது. மேலும் மறுதலையாக, முடிவுறு கூட்டுத்தொகைகளையும், முடிவுறா தொடர்களையும், தொகையீடுகளையும் நுண்கணிதமுறைகளையும் கொண்டு கணக்கிடவும் பயன்படுகிறது.

கணிதவியலாளர்கள் லியோனார்டு ஆய்லர், காலின் மெக்லாரின் ஆகிய இரு கணிதவியலாளர்களாலும் தனித்தனியாக இவ்வாய்பாடு ஏறக்குறைய 1735 இல் கண்டுபிடிக்கப்பட்டது. ஆய்லருக்கு இது, மெதுவாக ஒருங்கும் முடிவுறாத் தொடர்களைக் கணக்கிடத் தேவைப்பட்டது. மெக்லாரின் தொகையீடுகளைக் கணிக்கிடுவதற்கு இவ்வாய்பாட்டைப் பயன்படுத்தினார்.

Remove ads

வாய்பாடு

m, n இரண்டும் இயல் எண்கள்; [m,n], என்ற இடைவெளியில் x இன் மெய்யெண் மதிப்புகளுக்கு, f(x), ஒரு மெய் அல்லது சிக்கலெண் மதிப்புக்கொண்ட தொடர்ச்சியான சார்பு எனில்: என்ற தொகையீட்டைக் கீழ்வரும் கூட்டுதொகையாகவும், (எதிர் மாறாகவும்) தோராயப்படுத்தலாம்.

ஆய்லர்-மெக்லாரின் வாய்பாடானது, கூட்டுத்தொகைக்கும் தொகையீட்டுக்கும் உள்ள வித்தியாசத்தை [m,n] இடைவெளியின் இறுதிப்புள்ளிகளில் (x = m, x = n) காணப்படும் உயர்வரிசை வகையீடுகளைக் கொண்டு (f(k)(x)) கணக்கிடுகிறது.

p, நேர்ம முழு எண்ணுக்கு, [m,n] இடைவெளியில், f(x) சார்பானது p தடவைகள் வகையிடத்தக்கதாக இருந்தால்: இதில், Bk என்பது kஆவது பெர்னோலி எண் (B1 = 1/2); Rp என்பது பிழை உறுப்பு; இப்பிழை உறுப்பின் மதிப்பானது, n, m, p, f ஆகியவற்றைச் சார்ந்தும், p இன் பொருத்தமான மதிப்புகளுக்குச் சிறியதாகவும் இருக்கும்.

B1 ஐத் தவிர பிற ஒற்றை பெர்னோலி எண்கள் பூச்சியமாக இருக்குமென்பதால், பெரும்பாலும் இவ்வாய்பாடு, இரட்டைக் கீழொட்டுக்களைக் கொண்டு இவ்வாய்பாடு எழுதப்படுகிறது:[1][2]

(அல்லது)

Remove ads

மேற்கோள்கள்

மேலதிக வாசிப்புக்கு

வெளியிணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads