நடுக்கோடு (வடிவவியல்)

From Wikipedia, the free encyclopedia

நடுக்கோடு (வடிவவியல்)
Remove ads

வடிவவியலில், ஒரு முக்கோணத்தின் ஓர் உச்சியையும் அதன் எதிர்ப்பக்கத்தின் நடுப்புள்ளியையும் இணைக்கும் நேர்கோடு அம்முக்கோணத்தின் ஓர் இடைக்கோடு அல்லது இடையம் அல்லது நடுக்கோடாகும் (median). இதேபோல் மற்ற இரண்டு உச்சிகளிலிருந்தும் நடுக்கோடுகள் வரையலாம். எனவே, ஒவ்வொரு முக்கோணத்திற்கும் மூன்று நடுக்கோடுகள் உள்ளன. சமபக்க முக்கோணங்களில் நடுக்கோடுகள், அவை வரையப்படும் உச்சிக் கோணங்களை இருசமக்கூறிடுகின்றன. இருசமபக்க முக்கோணத்தில் சமநீளங்களைக் கொண்ட இரு பக்கங்களுஞ் சந்திக்கும் உச்சியிலிருந்து வரையப்படும் நடுக்கோடு, உச்சிக்கோணத்தை இருசமக்கூறிடுகின்றது.

Thumb
முக்கோணத்தின் நடுக்கோடுகளும் நடுக்கோட்டுச்சந்தியும்.
Remove ads

பொருண்மை மையத்துடன் தொடர்பு

ஒவ்வொரு நடுக்கோடும் முக்கோணத்தின் திணிவு மையம் அல்லது நடுக்கோட்டுச்சந்தி வழியாகச் செல்கிறது. சீரான அடர்த்தியுடைய முக்கோண வடிவப் பொருட்களுக்கு நடுக்கோட்டுச்சந்திதான் பொருண்மை மையமாக(center of mass) இருக்கும். எனவே அந்தப் பொருளானது நடுக்கோட்டுச்சந்தி வழியாகச் செல்லும் எந்தக் கோட்டின்மீதும் சமநிலைப்படும். இதனால் அப்பொருள் நடுக்கோட்டின்மீதும் சமநிலைப்படும்

சம- பரப்பு பிரிப்பு

Thumb

ஒவ்வொரு நடுக்கோடும் முக்கோணத்தின் பரப்பை இருசமமாகப் பிரிக்கின்றன. இதனால்தான் இவை நடுக்கோடுகள் என்று பெயரிடப்பட்டுள்ளன. முக்கோணத்தின் பரப்பை இருசமக்கூறிடும் வேறெந்தவொரு கோடும் நடுக்கோட்டுச்சந்தி வழியே செல்வதில்லை. மூன்று நடுக்கோடுகளும் சேர்ந்து முக்கோணத்தை, சம பரப்புள்ள ஆறு சிறு முக்கோணங்களாகப் பிரிக்கின்றன.

நிறுவல்

-ஐ எடுத்துக் கொள்க.
பக்கத்தின் நடுப்புள்ளி
பக்கத்தின் நடுப்புள்ளி
பக்கத்தின் நடுப்புள்ளி
நடுக்கோட்டுச்சந்தி,

நடுப்புள்ளிகளின் வரையறைப்படி:

மற்றும்
= -ன் பரப்பாகும்.

மற்றும் இரண்டிற்கும் அடிப்பக்க நீளங்கள் சமம். இரண்டின் அடிப்பக்கங்களும் ஒரேகோட்டின் பகுதிகளாக அமைவதாலும் அந்த அடிப்பக்கங்களின் எதிர் உச்சிகள் இரு முக்கோணங்களுக்குமே பொதுப்புள்ளி.யாக இருப்பதாலும் அவற்றின் உயரங்களும் சமமாக இருக்கும். எனவே இரு முக்கோணங்களின் பரப்புகள் சமம். இதேபோல் மற்ற சோடி சிறுமுக்கோணங்களின் பரப்புகள் சமம் என்பதைக் காணலாம்.

= -ன் பரப்பு எனில்:
------------சமன்பாடு (1)
------------சமன்பாடு (2)
------------சமன்பாடு (3)
மற்றும்
------------சமன்பாடு (4)

படத்திலிருந்து:

------------சமன்பாடு (5)
------------சமன்பாடு (6)
சமன்பாடுகள் (3) , (4) பயன்படுத்த:
------------சமன்பாடு (7)
மேலும் சமன்பாடு (1) -ன் படி

இதேபோல்:

மற்றும்
எனவும் நிறுவலாம்.
Remove ads

நடுக்கோட்டுகளின் நீளங்களைக் கொண்ட வாய்ப்பாடுகள்

நடுக்கோடுகளின் நீளங்களை அப்பலோனியஸ் தேற்றத்திலிருந்து பெறலாம்.

இங்கு a, b மற்றும் c -முக்கோணத்தின் பக்க நீளங்கள். மேலும் அவற்றின் நடுப்புள்ளிகளிலிருந்து வரையப்பட்ட நடுக்கோடுகளின் நீளங்கள் முறையே, ma, mb, and mc எனில்:

பக்க நீளங்களுக்கும் நடுக்கோடுகளின் நீளங்களுக்கும் இடையேயுள்ள தொடர்பு:[1]

Remove ads

பிற பண்புகள்

எந்தவொரு முக்கோணத்துக்கும்,[2]

(சுற்றளவு) < நடுக்கோட்டு நீளங்களின் கூடுதல் < (சுற்றளவு).

பக்க அளவுகள், மற்றும் நடுக்கோட்டு நீளங்கள், கொண்ட எந்தவொரு முக்கோணத்திற்கும்:[2]

Remove ads

மேற்கோள்கள்

வெளி இணப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads