இயற்கணித அடிப்படைத் தேற்றம்

From Wikipedia, the free encyclopedia

Remove ads

இயற்கணித அடிப்படைத் தேற்றத்தின் (fundamental theorem of algebra) கூற்று:

சிக்கலெண் கெழுக்களுடன், மாறிலியுறுப்பு மட்டுமே கொண்டிராத, ஒருமாறியிலமைந்த பல்லுறுப்புக்கோவை ஒவ்வொன்றுக்கும் குறைந்தபட்சமாக ஒரு சிக்கலெண் மூலமாவது இருக்கும்.

ஒவ்வொரு மெய்யெண்ணையும் கற்பனைப் பகுதி பூச்சியமாகவுள்ள ஒரு சிக்கலெண்ணாகக் கருதலாம் என்பதால், இத்தேற்றமானது மெய்யெண்கள் கெழுக்களுடன் மாறிலியுறுப்பு மட்டுமே கொண்டிராத, ஒருமாறியிலமைந்த பல்லுறுப்புக்கோவைகளுக்கும் பொருந்தும். இத்தேற்றமானது, தெ'ஆலம்பர்த்தின் தேற்றம் (d'Alembert's theorem)[1] அல்லது தெஆலம்பர்த்-காஸ் தேற்றம் (d'Alembert–Gauss theorem),[2] எனவும் அழைக்கப்படுகிறது.

இத்தேற்றத்தின் கூற்றுக்குச் சமானமானமானதாக "சிக்கலெண் களமானது இயற்கணிதமுறையில் அடைவு பெற்றுள்ளது" எனவும் கூறலாம்.

Remove ads

வரலாறு

பீட்டர் ராத், தனது "அரித்மெட்டிக்கா பிலாசபிக்கா" (1608 ஆம் ஆண்டு நர்ன்பெர்க்கில் ஜோகன் லான்ட்சென்பெர்கரால் வெளியிடப்பட்டது) என்ற நூலில் (, at Nürnberg, by Johann Lantzenberger),[3] மெய்யெண் கெழுக்களுடன் n படிகொண்ட பல்லுறுப்புக்கோவை சமன்பாட்டிற்கு n தீர்வுகள் "இருக்கலாம்" எனக் குறிப்பிட்டிருந்தார். பிரெஞ்சு கணிதவியலாளர் ஆல்பர்ட்டு ஜிரார்டு தனது நூலில் (L'invention nouvelle en l'Algèbre, 1629), n படிகொண்ட பல்லுறுப்புக்கோவைக்கு n தீர்வுகள் "இருக்குமென்பதை உறுதிப்படுத்தினார்; அவர் பல்லுறுப்புக்கோவையின் கெழுக்கள் மெய்யெண்களாக இருக்கவேண்டுமெனக் குறிப்பிடவில்லையென்றாலும் பல்லுறுப்புக்கோவையானது, முழுமையற்றதாக இருக்கக்கூடாதென்பதைக் (எந்தவொரு கெழுவும் பூச்சியமாக இருக்கக் கூடாது) குறிப்பிட்டிருந்தார். எனினும் அவர் தனது கருத்தை விவரமாக விளக்கும்போது, முழுமையற்றவைக்கும் இக்கருத்து பொருந்தும் என்பதை நம்பினார் என்பதை அறியமுடிகிறது.

எடுத்துக்காட்டாக,

என்ற பல்லுறுப்புக்கோவைச் சமன்பாடு முழுமையற்றத்தாக உள்ளது ( உறுப்புக்களின் கெழுக்கள் பூச்சியமாகவுள்ளன). இதன் '4' தீர்வுகள் (மடங்கெண் உட்பட):
1 (இருமுறை), and

அடிப்படை இயற்கணிதத் தேற்றத்தின் கூற்றுப்படி, மெய்யெண் கெழுக்களுடன் மாறிலியுறுப்பு மட்டுமில்லாத பல்லுறுப்புக்கோவை ஒவ்வொன்றையும் ஒன்று அல்லது இரு படியுள்ள மெய்யெண் கெழு பல்லுறுப்புக்கோவைகளின் பெருக்கற்பலனாக எழுதலாமென்ற முடிவு கிடைக்கிறது. இருந்தும் 1702 இல் கணிதவியலாளர் லைப்னிட்சு, x4 + a4 (a ஒரு பூச்சியமற்ற மெய்யெண்) என்ற வடிவிலமைந்த எந்தவொரு பல்லுறுப்புக்கோவையையும் அவ்வாறு எழுதமுடியாது என அறிவித்தார். அவரது கூற்றை ஒத்ததாகக் கணிதவியலாளர் பெர்னொலியும் x4 − 4x3 + 2x2 + 4x + 4 என்ற பல்லுறுப்புக்கோவையையும் பெருக்கற்பலனாக எழுத இயலாதென்பதை வலியுறுத்தினார். ஆனால் கணிதவியலாளர் ஆய்லர் 1742 இல்[4] பெர்னொலிக்கு எழுதிய கடிதத்தில் மேலே தரப்பட்ட இரு இக்கூற்றுகளையும் மறுத்து அதற்கான விடையயும் எழுதியிருந்தார்:

()

1746 இல் கணிதவியலாளர் தெ'ஆலம்பர்த்து இத்தேற்றத்தை நிறுவ முயன்றார். ஆனால் அவரளித்த நிறுவல் முழுமையானதாக இருக்கவில்லை. மேலும் ஆய்லர் (1749), தி பான்செனெக்சு, (1759), லாக்ராஞ்சி (1772), இலப்லாசு (1795) ஆகிய நான்கு கணிதவியலாளர்களும் இத்தேற்றத்தினை நிறுவ முயன்றனர். இந்நான்கு பேரின் முயற்சிகளிலும் ஜெரார்டின் உறுதிப்படுத்தல் மறைமுகமாக கையாளப்பட்டிருந்தது; அதாவது, தீர்வுகள் உண்டு என்பது நிறுவப்படாமல் எடுத்துக்கொள்ளப்பட்டு, தீர்வுகள் a + bi (a, b மெய்யெண்கள்) வடிவிலமையும் என்பது மட்டுமே நிறுவப்பட்டது.

18 ஆம் நூற்றாண்டின் இறுதியில் இத்தேற்றத்திற்கு இரு புதிய நிறுவல்கள் வெளியிடப்பட்டன. அவை தீர்வுகள் உள்ளமையையும் நிறுவினாலும் வேறுவகையில் முழுமையான நிறுவல்களாக அமையவில்லை. இரு நிறுவல்களில் கணிதவியலாளர் ஜேம்சு வுட் என்பவரின் நிறுவல் முழுவதுமாக ஒதுக்கப்பட்டது.[5] மற்றொரு நிறுவல் கணிதவியலாளர் காசால் 1799 இல் வெளியிடப்பட்டது. இந்நிறுவல் வடிவவியலாக இருந்தது. இதிலுள்ள குறைகளைக் கணிதவியலாளர் அலக்சாண்டர் ஆஸ்டிரொவ்சுக்கி 1920 இல் சரிசெய்தார்.[6]

இத்தேற்றத்திற்கான சரியான நிறுவல், முதலாவதாகக் கணிதவியலாளர் ஜீன்-ராபர்ட் ஆர்கன் என்பவரால் 1806 ஆம் ஆண்டில் வெளியிடப்பட்டு, 1813 ஆம் ஆண்டில் மேலதிகத் திருத்தமும் செய்யப்பட்டது.[7] இங்குதான் இத்தேற்றமானது மெய்யெண்கெழுக்கள் கொண்ட பல்லுறுப்புக்கோவைகளுக்கானதாக மட்டுமில்லாமல் சிக்கலெண் கெழுக்கள் கொண்ட பல்லுறுப்புக்கோவைகளுக்குமானதாக மாற்றியமைக்கப்பட்டது. 1816 இல் கணிதவியலாளர் காஸ் மேலு இரு நிறுவல்களை வெளியிட்டார்.

இத்தேற்றத்திற்காக நிறுவல் வெளியான முதல் பாடப்புத்தகம் அகுஸ்டின்-லூயி கோசியினதாகும் (Cours d'Analyse - 1821). அப்புத்தகத்தில் ஆர்கனின் நிறுவல் இருந்தது; ஆனால் அதில் ஆர்கனின் பெயர் குறிப்பிடப்படவில்லை.

மேலே குறிப்பிடப்பட்ட நிறுவல்கள் எதுவும் ஆக்கமுறையானவையாக அமையவில்லை. இத்தேற்றத்திற்கான ஆக்கமுறைநிறுவல் முதலாவதாகக் கணிதவியலாளர் வியார்ஸ்ட்ராசால் 1891 இல் வெளியிடப்பட்டது. பின்னர் மற்றொன்று கணிதவியலாளர் ஹெல்மத் நெசெரால் 194ஒல் வெளியிடப்பட்டு அவரது மகன் மார்ட்டின் நெசெரால் 1981 இல் மேலும் எளிமையாக்கி வெளியிடப்பட்டது.

Remove ads

சமானக் கூற்றுகள்

இத்தேற்றத்தின் வெவ்வேறு சமானமான கூற்றுகள்:

( சிக்கலெண்கள்).
  • ஆகிய n சிக்கலெண்கள் பல்லுறுப்புக்கோவையின் மூலங்கள். ஒரே மூலமானது பல காரணிகளில் இருந்தால் அது பல்லுறுப்புக்கோவையின் மடங்கு மூலம் எனப்படுவதோடு, அது எத்தனை காரணிகளில் காணப்படுகிறதோ அந்த எண்ணானது அம்மூலத்தின் மடங்கெண் எனவும் அழைக்கப்படும்.
  • மெய்யெண் கெழு-ஒருமாறி பல்லுறுப்புக்கோவையின் படியானது இரண்டைவிட அதிகமாக இருந்தால், அதற்கு மெய்யெண் கெழுவுள்ள இருபடியுள்ள ஒரு காரணி இருக்கும்.
  • மெய்யெண் கெழு-ஒருமாறி பல்லுறுப்புக்கோவை ஒவ்வொன்றையும் கீழுள்ளவாறு காரணிப்படுத்தலாம்:
c ஒரு மெய்யெண் மற்றும் ஒவ்வொன்றும் அதிகபட்சமாக இருபடியுள்ள மெய்யெண்-கெழு தலையொற்றை பல்லுறுப்புக்கோவையாக இருக்கும்.
Remove ads

மேற்கோள்கள்

வரலாற்று ஆதாரங்கள்

வெளியிணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads