ஐசோமார்பிஸம்

From Wikipedia, the free encyclopedia

ஐசோமார்பிஸம்
Remove ads

கணிதத்தில், ஒரு சமவளையம் (பண்டைய கிரேக்க:  ஐசோஸ் "சம"), மற்றும்  "வடிவம்" அல்லது "வடிவம்") ஒரு தலைகீழ் அல்லது மரபியல் (அதாவது ஒரு கணித மேப்பிங்) ஆகும். இரண்டு கணிதப் பொருள்களும் சமசீரற்றவையாகும்.[1][note 1][note 2]

Thumb
Thumb
The group of fifth roots of unity under multiplication is isomorphic to the group of rotations of the regular pentagon under composition.

ஒரு தன்னியக்க நுண்ணுயிரி என்பது ஒரு மூலக்கூறு ஆகும், அதன் மூலமும் இலக்கணமும் இணைந்திருக்கும். இரு சமச்சீரற்ற பொருள்கள் வேறுபடுதலால் வரையறுக்கப் பயன்படும் பண்புகளை மட்டுமே பயன்படுத்துவதன் மூலம், சமச்சீரற்ற தன்மை உடையது, இவ்வாறு, ஒரே மாதிரியான பண்புகள், அவற்றின் விளைவுகள் ஆகியவற்றைக் கருத்தில் கொண்டால், ஒரே       மாதிரியான விஷயங்களைக் கருதலாம்.

குழுக்கள் மற்றும் மோதிரங்கள் உள்ளிட்ட பெரும்பாலான இயற்கணித கட்டமைப்புகளுக்கு, ஒரே மாதிரியான ஒரே மாதிரியான ஒரே மாதிரியான ஒரு தனிமையாக்கம் ஆகும்.

டோபாலஜியில்,மோர்பிஸம் தொடர்ச்சியான செயல்பாடுகள், ஐசோமோர்பீம்கள் ,ஹோமோமோர்ஃப்சிஸ் அல்லது பிக்கன்டினவுன் செயல்பாடுகளாகவும் அழைக்கப்படுகின்றன. கணிதவியல் பகுப்பாய்வில்,முரண்பாடுகள் வேறுபடுபவையாக செயல்படுகின்றன, ஐசோமோர்பிஸ்கள் மேலும் டிஃபோமோர்பிஸ்ம் என்று அழைக்கப்படுகின்றன.

ஒரு நியோமோர்ஃபிஸம் என்பது ஒரு நியமன வரைபடம்.இரண்டு பொருள்களை நியோமோக்பாலிக் என்று கூறப்படுகிறது என்றால் அவர்களுக்கிடையில் ஒரு நியமன சமன்பாடு இருந்தால் வேண்டும்.உதாரணமாக, ஒரு வரையறுக்கப்பட்ட-பரிமாண வெக்டார் வால் V இல் இருந்து அதன் இரண்டாம் இரட்டை இடைவெளியில் இருந்து நியமன வரைபடம் ஒரு நியமன சமத்துவமமாகும்; மறுபுறத்தில், வி அதன் இரட்டை இருப்பிடத்திற்கு சமமானதாக இருக்கிறது, ஆனால் பொதுவாக பொதுவில் இல்லை.

சொற்பிறப்பியல் வகை  கோட்பாட்டைப் பயன்படுத்தி முறைப்படுத்தப்படுகின்றன. ஒரு வகையிலான ஒரு உருமாதிரி f: X → Y என்பது ஒரு இரு சமச்சீர் தலைகீழ் என்பதை ஒப்புக்கொள்கிறீர்களானால், ஐ.மா. → x = X மற்றும் fg = 1Y, 1X மற்றும் 1Y X மற்றும் Y இன் அடையாள அடையாளங்கள் முறையே.

Remove ads

ஐசோமோபீசம் எதிராக பன்முகத்தன்மை

ஒரு உறுதியான பிரிவில் (அதாவது, ஒரு பொருளை செட் மற்றும் மோர்ஃபார்ம்கள் என்று வகைப்படுத்தலாம், இது ஒரு பிரிவினருக்கு இடையில் உள்ள மேப்பிங்ஸ் ஆகும்), குழுக்கள், மோதிரங்கள் மற்றும் தொகுதிகள் போன்ற இயற்கணித பொருள்களின் பரப்பியல் இடைவெளிகள் அல்லது பிரிவுகளின் வகை போன்றஅடிப்படை சமன்பாடுகளில் ஒரு சமவளையம் இருக்க வேண்டும்.இயற்கணித வகைகளில் (குறிப்பாக, உலகளாவிய இயற்கணிதம் என்ற வகையிலான வகைகள்), ஒரு சமோபிராஸிசம் என்பது ஒரு தனித்தன்மையும், இது அடிப்படைக் கூறுகளில் உயிரோட்டமுள்ளதாகும். எவ்வாறாயினும், இருசமயத் தத்துவங்கள் அவசியமற்ற சமத்துவமின்மை அல்ல(இடப்பெயர்ச்சி இடைவெளிகளின் வகையைப் போன்றது),  மற்றும் ஒவ்வொரு பொருளும் ஒரு அடிப்படை அமைப்பை ஏற்றுக்கொள்கின்ற வகையிலான பிரிவுகள் உள்ளன, ஆனால் இதில் சமோபார்ஃபிக்சியங்கள் பின்தங்கியவை (அல்லசி.டபிள்யு-வளாகங்களின் ஓரினச்சேர்க்கை வகை போன்றவை) 

Remove ads

 பயன்பாடுகள்

சுருக்கம் இயற்கணிதத்தில், இரண்டு அடிப்படை ஐசோமோபீசம்  வரையறுக்கப்படுகின்றன:

  •  குழு மாதிரிகள், குழுக்களுக்கிடையேயான ஒரு சமநிலையமைவு
  • மோதிரம் சமன்பாடு, மோதிரங்கள் இடையே ஒரு சமநிலை.(துறைகள் இடையேயோமோபார்ஸ் உண்மையில் மோதிரம் ஐஓமோபோர்ஃபிக்ஸ்கள் என்பதைக் கவனியுங்கள்)

ஒரு இயற்கணித கட்டமைப்பின் ஆட்டோமேர்ஃபீசஸ் ஒரு குழுவை உருவாக்குவது போலவே, ஒரு பொதுவான கட்டமைப்பைப் பகிர்ந்து கொள்ளும் இரண்டு இயற்கணிதங்களுக்கிடையேயான சமச்சீர் தன்மை குவியல் உருவாக்குகிறது. ஒரு குறிப்பிட்ட சமசீரற்ற தன்மையைக் கூறுவதன் மூலம் இந்த இரண்டு குணாதிசயங்களும் இந்த குவியலை ஒரு குழுவாக மாற்றிவிடும்.

கணிதப் பகுப்பாய்வில், லாப்ளேஸ் உருமாற்றம் என்பது இயற்கணித சமன்பாடுகளுக்கு கடினமான வேறுபாடு சமன்பாடுகளை வரையறுக்கும் ஒரு சமநிலையமைப்பாகும்.

வரைபடக் கோட்பாட்டில், இரண்டு வரைபடங்களுக்கிடையேயான ஒரு மாதிரியாக்கம் ஜி மற்றும் எச் என்பது G இன் உயரங்களைக் குறிக்கும் ஒரு பன்முக வரைபடம் f என்பது "H விளிம்புகளை" பாதுகாக்கிறது, அதாவது "விளிம்புக் கோட்டின்" Ƒ (u) ƒ (v) க்கு எச் H ல் உள்ள ஒரு விளிம்பில் இருந்தால் மட்டுமே வரைபட சமன்பாடு பார்க்கவும்.

கணித பகுப்பாய்வு, இரு ஹில்ட்பெர் இடைவெளிகளுக்கு கூடுதலாக, ஸ்கேலார் பெருக்கல், மற்றும் உள் தயாரிப்பு ஆகியவற்றைப் பாதுகாத்தல்.

Remove ads

சமத்துவம் கொண்ட உறவு

கணிதத்தின் சில பகுதிகள், முக்கியமாக வகை கோட்பாடு, ஒரு புறத்தில் சமநிலை மற்றும் மறுபுறத்தில் சமநிலைக்கு இடையேயான வேறுபாட்டைக் குறிப்பிடத்தக்கது. சமன்பாடு இரண்டு பொருள்கள் ஒரே மாதிரியாக இருக்கும்போது, ஒரு பொருளைப் பற்றிய உண்மை என்பது மற்றொன்றைப் பற்றிய உண்மைதான். ஒரு மாதிரியான ஒரு பொருளின் கட்டமைப்பின் ஒரு பகுதியைப் பற்றியது உண்மைதான். உதாரணமாக, செட்

and

 சமம்; அவை வேறுபட்ட விளக்கங்கள் ஆகும் - முதலாவதாக ஒரு செறிவான ஒன்று (தொகுப்பு பில்டர் குறிப்பேட்டில்), மற்றும் இரண்டாவது விரிவான ஒன்று (வெளிப்படையான கணக்கெடுப்பு ) - முழுமையாக்கிகளின் அதே துணைக்குழு.இதற்கு மாறாக, {A, B, C} மற்றும் {1,2,3} செட்கள் சமமாக இருக்காது - முதல் எழுத்துக்கள் இருக்கும் உறுப்புகள் உள்ளன. இவை செவ்வக வடிவங்களாக இருக்கின்றன, ஏனென்றால் வரையறுக்கப்பட்ட செட்கள் தங்கள் கார்டினலின் (உறுப்புகளின் எண்ணிக்கையால்) ஐஒமோபிராசத்திற்குத் தீர்மானிக்கப்படுகின்றன, இவை இரண்டும் மூன்று கூறுகள் உள்ளன, ஆனால் சமோபரிஸம் பல தேர்வுகள் உள்ளன - ஒன்று சம 

எந்தவொரு சமோபரிஸமும் வேறு எந்த விடயத்தையும் விட சிறந்தது. இந்த பார்வை மற்றும் இந்த கருத்தில், இந்த இரண்டு செட் சமமானவை அல்ல, ஏனென்றால் அவற்றை ஒரே மாதிரியாகக் கருதுவதில்லை: அவற்றுக்கு இடையேயான ஒரு சமச்சீரற்றத்தைத் தேர்வு செய்யலாம், ஆனால் இது அடையாளத்தை விட பலவீனமான கூற்று ஆகும் - தேர்ந்தெடுக்கப்பட்ட ஐசோமோர்ஃபிஸின் சூழலில் மட்டுமே செல்லுபடியாகும். எந்தவொரு சமத்துவமற்றதும் வேறு எந்த விடயத்திலும் உள்ளதாக இல்லை. இந்த பார்வை மற்றும் இந்த கருத்தில், இந்த இரண்டு செட் சமமானவை அல்ல, ஏனென்றால் அவற்றை ஒரே மாதிரியாகக் கருதுவதில்லை: அவற்றுக்கு இடையேயான ஒரு சமச்சீரற்றத்தைத் தேர்வு செய்யலாம், ஆனால் இது அடையாளத்தை விட பலவீனமான கூற்று ஆகும் - தேர்ந்தெடுக்கப்பட்ட ஐசோமோர்ஃபிஸின் சூழலில் மட்டுமே செல்லுபடியாகும்.

Remove ads

மேலும் காண்க

குறிப்புகள்

குறிப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads