சார்பு எல்லை

From Wikipedia, the free encyclopedia

Remove ads

நுண்கணிதத்தின் அடிப்படைக் கருத்துகளில் முதன்மையானது ஒரு சார்பின் எல்லை. அருகாமை அல்லது நெருக்கம் குறித்த உணர்நிலையுடன் நெருக்கமாக இருப்பது 'எல்லை' எனும் கருத்தாக்கம். இத்தகைய நெருக்கங்களை கூட்டல், பெருக்கல், கழித்தல், வகுத்தல் முதலான இயற்கணித அடிப்படைச் செயல்பாடுகள் மூலம் விளக்க முடியாது. மாறுகிற ஒரு அளவையைச் சார்ந்து இன்னொரு அளவை அமையும் சூழல்களில் 'எல்லை' எனும் கோட்பாடு பயன்படுகிறது.

வரையறை

f ஆனது x-ஐச் சார்ந்த சார்பு எனவும் c, L என்பன இரண்டு நிலை எண்கள் எனவும் கொள்வோம். x-ஆனது c-ஐ நெருங்கும் போது, f(x) ஆனது L-ஐ நெருங்குமானால் L-ஐ f(x)-ன் எல்லை என்கிறோம். இதனை,

என எழுதுவது வழக்கம்.

Remove ads

விளக்கமும் எடுத்துக்காட்டுகளும்

Thumb
ஒரு புள்ளி x இன் மதிப்பு c இலிருந்து δ தொலைவுக்குள் இருக்கும்போது f(x) இன் மதிப்பு L இலிருந்து ε தொலைவுக்குள் இருக்கும்.
Thumb
x > S ஆகவுள்ள அனைத்து மதிப்புகளுக்கும் f(x) இன் மதிப்பு L இலிருந்து ε தொலைவுக்குள் இருக்கும்.

f ஒரு மெய்மதிப்புச் சார்பு மற்றும் c ஒரு மெய்யெண் எனில்,

x ஐத் தேவையான அளவு c க்கு மிகஅருகில் நெருங்கினால், f(x) இன் மதிப்பு தேவையான அளவு L க்கு மிகஅருகாமையில் நெருங்கும் என்பது இதன் பொருளாகும்.[1] "x இன் மதிப்பு c ஐ நெருங்கும்போது f(x) இன் எல்லைமதிப்பு L" என இவ்வரையறை வாசிக்கப்படும்.

1821 இல் அகுஸ்டின்-லூயி கோசியும்[2] அவரைத் தொடர்ந்து கார்ல் வியர்ஸ்ட்ராசும் ஒரு சார்பின் எல்லைக்கான வரையறையை (எல்லையின் (ε, δ) வரையறை) ஏதேனுமொரு சிறிய நேர்ம எண்ணைக் குறிக்க ε ஐப் பயன்படுத்தி முறைப்படுத்தினர்.[3]

"f(x) ஆனது L க்கு மிக அருகாமையில் அமைகிறது" என்ற சொற்றொடரை இடைவெளியைப் பயன்படுத்தி,

  • (Lε, L + ε) இடைவெளியில் f(x) அமைகிறது எனவும்,

தனிமதிப்பைப் பயன்படுத்தி,

  • |f(x) − L| < ε.[2] எனவும் கூறலாம்.

x ஆனது c ஐ நெருங்குகும்போது" என்ற சொற்றொடரைக் கீழுள்ளவாறு எழுதலாம்:

  • x இன் மதிப்பானது (cδ, c) அல்லது (c, c + δ) இடைவெளிகளில் அமையும்.
  • 0 < |xc| < δ.

இதிலுள்ள முதல் சமனிலியானது x, c இரண்டுக்கும் இடைப்பட்ட தொலைவு 0 விட அதிகம் மற்றும் xc என்பதையும், இரண்டாவது சமனிலியானது x ஆனது of c இலிருந்து δ அளவு தொலைவுக்குள் இருக்குமென்பதையும் சுட்டுகின்றன.[2]

f(c) ≠ L என்றாலுங்கூட மேற்கண்ட சார்பின் எல்லை வரையறை உண்மையாக இருக்கும். மேலதிகமாக, சார்பு f ஆனது c புள்ளியில் வரையறுக்கப்படாவிட்டாலுங்கூட இவ்வரையறை பொருந்தும்..

எடுத்துக்காட்டு:

f(1) வரையறுக்கப்படவில்லை (தேரப்பெறா வடிவம்). எனினும் x இன் மதிப்பானது 1 ஐ நெருங்கும்போது அதனையொத்து f(x) இன் மதிப்பு 2 ஐ நெருங்குகிறது:[4]

f(0.9)f(0.99)f(0.999)f(1.0)f(1.001)f(1.01)f(1.1)
1.9001.9901.999வரையறுக்கப்படாதது2.0012.0102.100

இந்த அட்டவணையிலிருந்து x இன் மதிப்பு 1 க்கு அருகாமையில் நெருங்க நெருங்க f(x) இன் மதிப்பு 2 க்கு அருகே நெருங்குவதைக் காணலாம். அதாவது,

இயற்கணிதமுறையிலும் இதனைக் காணலாம்:

(x ≠ 1)

x + 1 சார்பானது x = 1 புள்ளியில் தொடர்ச்சியானது. எனவே x = 1 என உள்ளிட,

முடிவுறு மதிப்புகளில் மட்டுமன்றி முடிவுறா மதிப்புகளிலும் சார்புகளுக்கு எல்லை மதிப்புகள் உண்டு.

எடுத்துக்காட்டு:

  • f(100) = 1.9900
  • f(1000) = 1.9990
  • f(10000) = 1.9999

x இன் மதிப்பு மிகமிக அதிகமாகும்போது f(x) இன் மதிப்பு 2 ஐ நெருங்குகிறது. தேவையான அளவு x இன் மதிப்பைப் பெரிதாக்குவதன் மூலம் f(x) இன் மதிப்பை 2 க்கு மிகவருகில் வரவைக்கலாம். எனவே x இன் மதிப்பு முடிவிலியை நெருங்கும்போது இச்சார்பின் எல்லை 2 ஆகும். அதாவது,

Remove ads

அடிக்குறிப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads