மின்மமாக்கும் ஆற்றல்

அயனியாக்க ஆற்றல் From Wikipedia, the free encyclopedia

மின்மமாக்கும் ஆற்றல்
Remove ads

அணு அல்லது மூலக்கூறு ஒன்றின் மின்மமாக்கும் ஆற்றல் அல்லது அயனியாக்கும் ஆற்றல் (Ionization energy, EI) என்பது அவ்வணு அல்லது மூலக்கூறின் வளிம நிலையில் அதன் ஓர் இலத்திரனை முடிவிலிக்கு வெளியேற்றத் தேவைப்படும் மிகக்குறைந்த ஆற்றல் ஆகும். இச்செயல்முறை பின்வருமாறு விளக்கப்படுகிறது.

X + ஆற்றல் → X+ + e-
Thumb
அயனியாக்கும் ஆற்றலின் வளர்ச்சிப் போக்கு ஒவ்வொரு கார உலோகத்திலும் குறைந்தபட்சமாகத் தொடங்கி மந்த வாயுவில் அதிகபட்சமாக முடிவடைகிறது

.

முன்னர் இது அயனியாக்கும் மின்னழுத்தம் (ionization potential) எனவும் வழங்கப்பட்டு வந்தது. ஆனால் இச்சொல் தற்பொழுது பரிந்துரை செய்யப்படுவதில்லை.[1]

இயற்பியலில் அயனியாக்கும் ஆற்றல் இலத்திரன்வோல்ட் (eV) என்ற அலகால் தரப்படுகிறது. இது ஒரு தனித்த அணு அல்லது மூலக்கூறு ஒன்றில் இருந்து ஓர் இலத்திரனை வெளியேற்றத் தேவைப்படும் ஆற்றல் ஆகும். வேதியியலில், இது மோலார் அளவினால் (மோலார் அயனியாக்கும் ஆற்றல் அல்லது வெப்ப அடக்கம்) கூறப்படுகிறது. இதன் அலகு லோஜூல்/மோல் அல்லது கிகலோரி/மோல் (இங்கு ஒரு மோல் அணு அல்லது மூலக்கூறில் இருந்து ஒரு மோல் இலத்திரனை வெளியேற்றத் தேவைப்படும் ஆற்றல்)[2]).

nவது மின்மமாக்கும் ஆற்றல் என்பது (n-1) ஏற்றத்தைக் கொண்ட ஓர் அணுவில் இருந்து ஒரு இலத்திரனை வெளியேற்றத் தேவையான ஆற்றல் ஆகும். எடுத்துக்காட்டாக, முதல் மூன்று மின்மமாக்கும் ஆற்றல்கள் பின்வருமாறு தரப்படும்:

1வது மின்மமாக்கும் ஆற்றல்:
X → X+ + e-
2வது மின்மமாக்கும் ஆற்றல்:
X+ → X2+ + e-
3வது மின்மமாக்கும் ஆற்றல்:
X2+ → X3+ + e-

இதேபோல் மற்ற உயர் அயனியாக்கும் ஆற்றல்களையும் வரையறுக்க இயலும். ஒவ்வொரு அயனியாக்கும் ஆற்றலும் முன்னர் உள்ள அயனியாக்கும் ஆற்றலைவிட அதிகமாக இருக்கும். ஏனெனில், அந்த அயனியில் உள்ள மொத்த நேர்மின் சுமைக்கு எதிராக இலத்திரன் நீக்கப்படுகிறது.

அணு (வாயு) + ஆற்றல் → நேர்மின் அயனி(வாயு) + இலத்திரன் என்ற சுருக்கச் சமன்பாடு அயனியாக்கும் ஆற்றலை விளக்குகிறது. தனிம வரிசை அட்டவணையின் ஒரு வரிசையில் அயனியாக்கும் ஆற்றலின் மதிப்புகள் இடப்பக்கத்திலிருந்து வலப்பக்கம் வரை சிறிது இடைவெளிகளுடன் அதிகரிக்கிறது. ஒரே தொகுதியில் அயனியாக்கும் ஆற்றல் மேலிருந்து கீழ்பகுதிவரை குறைகிறது. பொதுவாக ஓர் அணுவின் அயனியாக்கும் ஆற்றல் பின்வரும் காரணிகளைப் பொருத்ததாகும்.

Remove ads

அயனியாக்கும் ஆற்றலை நிர்ணயிக்கும் காரணிகள்

அணு அல்லது அயனியின் உருவளவு

அயனியாக்கும் ஆற்றலானது அணுவின் உருவளவு அதிகரிப்பதைப் பொருத்து குறைகிறது. அணுவின் உருவளவு அதிகமாக உள்ளபோது அயனியாக்கும் ஆற்றல் குறைவாக இருக்கும். சிறிய அணுக்களில் எலக்ட்ரான்கள் மிக நெருங்கியும், பெரிய அணுக்களில் எலக்ட்ரான்கள் இடைவெளியுடன் அமைந்திருப்பதே இதற்குக் காரணமாகும். இடைவெளியுடன் விரவியிருக்கும் எலக்ட்ரான்களை நீக்குவதற்கு குறைந்த அளவு ஆற்றலே தேவைப்படுகிறது. இதன் காரணமாகவே பெரிய அணுக்கள் குறைந்த அயனியாக்கும் ஆற்றலையும் சிறிய அணுக்கள் அதிக அயனியாக்கும் ஆற்றலையும் கொண்டுள்ளன.

பெரிலியத்தின் அயனியாக்கும் ஆற்றல் லித்தியத்தின் அயனியாக்கும் ஆற்றலை விட அதிகமாகும். பெரிலியத்தின் அணுக்கரு அளவு 112 pm.மற்றும் லித்தியத்தின் அணுக்கரு அளவு 152 pm ஆகும். தனிம வரிசை அட்டவணையில் தனிமங்களின் அணு எண் அதிகரிக்க அதிகரிக்க அணுக்கருவின் அளவு குறைகிறது. பெரிலியத்தின் அணுஎண் 4. லித்தியத்தின் அணு எண் 3. இதனால் பெரிலியத்தின் அணுக்கருவின் மின்சுமை லித்தியத்தின் அணுக்கருவின் மின்சுமையைவிட அதிகமாக இருக்கும். அணுக்கருவின் மின்சுமை அதிகமாக இருந்தால் அணுக்கரு மற்றும் வெளிக்கூட்டு எலக்ட்ரான் ஆகியவற்றிற்கு இடையேயான ஈர்ப்பு விசை அதிகமாக இருக்கும். எனவே பெரிலியத்தின் அயனியாக்கும் ஆற்றல் லித்தியத்தின் அயனியாக்கும் ஆற்றலைவிட அதிகமாக இருக்கும்.

உட்கரு மின்சுமையின் எண் மதிப்பு

அணுவின் உட்கருவிலுள்ள புரோட்டான்களின் அணுக்கரு மின்சுமை அதிகமாக இருந்தால் அயனியாக்கும் ஆற்றலும் அதிகரிக்கும். அதிகளவு புரோட்டான் மின்சுமை எலக்ட்ரான்களை அதிக விசையுடன் பிணைத்திருக்கும். இவ்விசையில் இருந்து வெளிக்கூட்டில் உள்ள எலக்ட்ரானை நீக்குவதற்கு அதிக அளவு ஆற்றல் தேவைப்படுகிறது.

மெக்னீசியத்தின் உட்கரு மின்சுமை ( 12 புரோட்டான்கள் ) சோடியத்தின் உட்கரு மின்சுமையை விட ( 11 புரோட்டான்கள் ) அதிகமாகும். எனவே மெக்னீசியத்தின் அயனியாக்கும் ஆற்றல் சோடியத்தின் அயனியாக்கும் ஆற்றலை விட அதிகமாகும்.

உள்கூட்டிலுள்ள எலக்ட்ரான்களின் எண்ணிக்கை

அணுவின் வெளிக்கூட்டிலுள்ள எலக்ட்ரான்மீது அணுக்கரு செலுத்தும் ஈர்ப்பு விசையானது உள்கூட்டிலுள்ள எலக்ட்ரானின் விலக்குவிசையினால் ஈடு செய்யப்படுகிறது. நீக்கப்படவேண்டிய எலக்ட்ரானானது அணுக்கருவின் ஈர்ப்பு விசையிலிருந்து உள்கூட்டிலுள்ள எலக்ட்ரான்களால் மறைக்கப்படுகிறது. இத்தகைய உள்கூடு எலக்ட்ரான்களின் மறைக்கும் தன்மையால் இணைதிறன் கூட்டிலுள்ள எலக்ட்ரான் அணுக்கருவினால் குறைந்த அளவே ஈர்க்கப்படுகிறது. எனவே அயனியாக்கும் ஆற்றல் குறைகிறது. தனிம வ்ரிசை அட்டவணையில் உள்ள ஒரு தொகுதியில் மேலிருந்து கீழிறங்கும்போது அயனியாக்கும் ஆற்றல் குறைவதற்கு இதுவே காரணமகும்.

எலக்ட்ரான் சுற்றுப்பாதையின் உருவளவு

எலக்ட்ரான் சுற்றுப்பாதைகளின் உருவளவு அயனியாக்கும் ஆற்றலை பாதிக்கிறது. ஒரே இணைதிறன் உள்ள s எலக்ட்ரான் p,d மற்றும் f எலக்ட்ரான்களைவிட அணுக்கருவிற்கு அருகில் இருப்பதால் எலக்ட்ரான்களின் ஊடுருவும் தன்மை s > p > d > f என்ற வரிசையில் அமைகிறது.

அலுமினியத்தின் அயனியாக்கும் ஆற்றல் மெக்னீசியத்தைவிட குறைவாகும். மெக்னீசியத்தின் எலக்ட்ரான் அமைப்பு [Ne]3s2 மற்றும் அலுமினியத்தின் எலக்ட்ரான் அமைப்பு [Ne]3s2 3p1 ஆகும். இவ்விரண்டையும் நோக்கும்போது அலுமினியத்தில் ஒரு 3p எலக்ட்ரானையும் மெக்னீசியத்தில் ஒரு 3s எலக்ட்ரானையும் நீக்க வேண்டும். ஆனால் s எலக்ட்ரானைவிட p எலக்ட்ரானை எளிதில் நீக்கிவிடலாம். எனவே அலுமினியத்தின் முதல் அயனியாக்கும் ஆற்றல் மெக்னீசியத்தைவிட குறைவாகும்.

எலக்ட்ரான் அமைப்பினால் வேறுபாடு

அணுக்கள் மிகவும் நிலையான எலக்ட்ரான் அமைப்பை பெற்று உள்ளபோது அதிக அயனியாக்கும் ஆற்றலைப் பெற்றிருக்கும். உயரிய வாயுக்கள் நிலையான எலக்ட்ரான் அமைப்பை பெற்றிருப்பதால் அவை அதிகபட்ச அயனியாக்கும் ஆற்றலை உடையவையாகும்.

நியானின் அணுக்கரு மின்சுமை (10) புளோரினின்அணுக்கரு மின்சுமையைவிட ( 9 ) அதிகமாகும். அணுக்கருவின் மின்சுமை அதிகரிக்கும்போது அணுக்கருவிற்கும், வெளிக்கூடு எலக்ட்ரானுக்கும் உள்ள ஈர்ப்புவிசை அதிகரிக்கும். எனவே நியானின் முதல் அயனியாக்கும் ஆற்றல் புளோரினைவிட அதிகமாகும்

Remove ads

மேற்கோள்கள்

வெளி இணைப்பு

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads