வெப்பமானி
From Wikipedia, the free encyclopedia
Remove ads
வெப்பமானி (Thermometer) என்பது பல்வேறு வகையான கொள்கைகளின் அடிப்படையில் வெப்பநிலை அல்லது வெப்பநிலை வேறுபாட்டை அளவிடும் ஒரு கருவி ஆகும். வெப்பமானியில் இரண்டு முக்கிய பகுதிகள் இருக்கின்றன: முதலாவது வெப்பநிலை உணர்வி, (எ.கா. பாதரச வெப்பமானியில் உள்ள குமிழ்) இதில் வெப்பநிலையின் காரணமாக இயற்பியல் ரீதியாக ஏற்படும் மாற்றங்கள், மேலும் இதில் இயற்பியல் மாற்றத்தை ஒரு அளவிடத்தக்க மதிப்பாக மாற்றக்கூடிய ஒரு வழியும் அடங்கியுள்ளது (எ.கா. பாதரச வெப்பமானியில் உள்ள அளவீடுகள்) ஒரு எண்ணிமத் திரையில் அல்லது கணினிக்கு உள்ளீடாக அளவீட்டைக் காண்பிக்க வெப்பமானிகள் தற்போது அதிக அளவில் மின்னணு தொழில்நுட்பங்களைப் பயன்படுத்துகின்றன.
இக்கட்டுரை கூகுள் மொழிபெயர்ப்புக் கருவி மூலம் உருவாக்கப்பட்டது. இதனை உரை திருத்த உதவுங்கள். இக்கருவி மூலம்
கட்டுரை உருவாக்கும் திட்டம் தற்போது நிறுத்தப்பட்டுவிட்டது. இதனைப் பயன்படுத்தி இனி உருவாக்கப்படும் புதுக்கட்டுரைகளும் உள்ளடக்கங்களும் உடனடியாக நீக்கப்படும் |

Remove ads
முதனிலை மற்றும் இரண்டாம் நிலை வெப்பமானிகள்
வெப்பமானிகளில் பயன்படுத்தப்படும், வெப்ப இயக்கவியல் விதிகள் மற்றும் அளவீடுகளின் இயற்பியல் அடிப்படையின் நிலையைப் பொறுத்து அவற்றை இரண்டு வெவ்வேறு பிரிவுகளாகப் பிரிக்க முடியும். முதனிலை வெப்பமானிகளில் பொருட்களின் அளவிடப்பட்ட பண்பு வெளிப்படையாக தெரிகிறது. மேலும் எந்தவிதமான தெரியாத அளவீடுகளின் அவசியமின்றி வெப்பநிலையை எளிதாக கணக்கிட முடியும். வாயு நிலை சமன்பாடு, காற்றில் ஒலியின் திசைவேகம், மின்தடையின் வெப்பநிலை இரைச்சல் (ஜான்சன்–நைக்விஸ்ட் இரைச்சல் என்பதைக் காணவும்) மின்னழுத்தம் அல்லது மின்னோட்டம், மற்றும் காந்த புலத்தில் இருக்கும் சில கதிரியக்க உட்கருக்களிலிருந்து உமிழப்படும் காமா கதிர்களின் திசைமாறும் பண்பு ஆகியவற்றின் அடிப்படையில் அமைந்த வெப்பமானிகள் இவற்றுக்கு சில எடுத்துக்காட்டுகள் ஆகும். முதனிலை வெப்பமானிகள் ஒப்பீட்டளவில் அதிகம் சிக்கலானவை.
பயன்பாட்டு எளிமை காரணமாக, இரண்டாம் நிலை வெப்பமானிகள் பெருமளவில் பயன்படுத்தப்படுகின்றன. மேலும் அவை, முதனிலை வெப்பமானிகளை விட பெரும்பாலும் அதிக உணர்திறன் கொண்டவையாக உள்ளன. இரண்டாம் நிலை வெப்பமானிகளில், அளவிடப்பட்ட பண்பை மட்டும் கொண்டு நேரடியாக வெப்பநிலை கணக்கீட்டைச் செய்ய முடியாது. அவற்றை, ஒரு முதனிலை வெப்பமானியுடன் குறைந்தபட்சம் ஒரு வெப்பநிலை அல்லது குறிப்பிட்ட எண்ணிக்கையிலான நிலையான வெப்பநிலைகள் ஆகியவற்றுடன் ஒப்பிட்டு அளவிட வேண்டும். இவ்வாறான, நிலைத்த புள்ளிகள், எடுத்துக்காட்டாக, மூன்று புள்ளிகள் மற்றும் மீக்கடத்தி மாற்றங்கள், போன்றவை ஒரே வெப்பநிலையில் மீண்டும் உருவாகக்கூடியவை.
Remove ads
வெப்பநிலை
ஒரே ஒரு வெப்பமானியைக் கொண்டு, வெப்பத்தை பாகைகளில் அளவிடலாம். ஆனால் இரண்டு வெப்பமானிகளின் அளவீடுகளை பொதுவாக ஏற்றுக்கொள்ளப்பட்ட ஒரு அளவீட்டுடன் பொருந்தாமல் ஒப்பிட முடியாது. இன்றைய காலகட்டத்தில், அசல் வெப்ப இயக்கவியல் வெப்பநிலை அளவீடுகளும் கிடைக்கின்றன. இதை மிகவும் நெருக்கமாக பிரதிபலிக்கும் வகையிலேயே சர்வதேச அளவில் ஏற்றுக்கொள்ளப்பட்ட, வெப்பநிலை அளவீடுகள் வடிவமைக்கப்பட்டுள்ளன. இவை நிலைத்த புள்ளிகள் மற்றும் மேற்பொருந்துதல் வெப்பமானிகள் அடிப்படையில் வடிவமைக்கப்பட்டுள்ளன. மிக சமீபத்தில் வெளிவந்த அதிகாரப்பூர்வ வெப்பநிலை அளவுகோலானது 1990ஆம் ஆண்டின் சர்வதேச வெப்பநிலை அளவுகோல் என்பதாகும். இது கிட்டத்தட்ட 0.65 K (−272.5 °C; −458.5 °F) முதல் 1,358 K (1,085 °C; 1,985 °F) வரையிலான விரிவான அளவீட்டைக் கொண்டுள்ளது.
Remove ads
ஆரம்பகால வரலாறு


வெப்பமானியைக் கண்டறிந்தவர் என்று பல வரலாற்றாசிரியர்களும் பலரைக் குறிப்பிடுகின்றனர், அவர்கள், கோர்னிலியஸ் ட்ரப்பெல், ராபர்ட் ஃப்ளட், கலிலியோ கலிலி அல்லது சான்டோரியோ சான்டோரியோ ஆகியோர் ஆவர். ஆனால் வெப்பமானி என்பது ஒரே கண்டுபிடிப்பில் நடந்தது அல்ல, அது தொடர்ந்து வளர்ச்சியடைந்து வந்த ஒரு பொருளாகும்.
ஃபிலோ ஆஃப் பைஸாந்தியம் மற்றும் ஹீரோ ஆஃப் அலக்ஸாண்டியா ஆகியோர் சில பொருட்கள், குறிப்பாக காற்று, விரிவடையும், சுருங்கும் தன்மை கொண்டது என்பதை அறிந்திருந்தனர். இதனை, ஒருபகுதி காற்று நிரம்பிய மூடிய குழாயை நீர் கொள்கலனில் வைத்து விளக்கிக்காட்டினார்கள்.[1] காற்றின் விரிவடைதல் மற்றும் சுருங்குதல் பண்பானது, நீர்/காற்று தொடும் பகுதியை குழாயின் பரப்பில் தொடர்ந்து இடமாற வைத்தது.
இந்த இயக்கமானது, பின்னர் காற்றின் விரிவடைதல் மற்றும் சுருங்குதல் பண்பினால் கட்டுப்படுத்தப்பட்ட நீரின் நிலையைப் பயன்படுத்தி, காற்றின் வெப்பம் அல்லது குளிர்நிலையைக் காண்பிக்க பயன்படுத்தப்பட்டது. இதுபோன்ற சாதனங்கள், 16ஆம் மற்றும் 17ஆம் நூற்றாண்டுகளில் ஐரோப்பாவில் காணப்பட்ட பல விஞ்ஞானிகளால் உருவாக்கப்பட்டன, இதில் கலிலியோ கலிலி குறிப்பிடத்தக்கவர்.[2]. இதன் விளைவாக, சாதனங்கள் நம்பகமான விளைவுகளைத் தர தொடங்கின, மேலும், தெர்மோஸ்கோப் என்ற சொல்லும் புழக்கத்தில் வந்தது, ஏனெனில் இந்த சாதனங்கள் உணரக்கூடிய வெப்பத்தில் ஏற்படும் மாற்றங்களைக் காண்பிக்கின்றன (இன்னும் உருவாகாத, வெப்பநிலை தொடர்பான கருத்தாக்கம்).[2] தெர்மோஸ்கோப் மற்றும் வெப்பமானி ஆகியவற்றுக்கு இடையேயான வேறுபாடு என்னவென்றால், இரண்டாவதற்கு அளவுகோல் இருக்கிறது.[3] கலிலியோ வெப்பமானியைக் கண்டறிந்தவர் என்று கூறப்பட்டாலும், அவர் உருவாக்கியது தெர்மோஸ்கோப்களே.
ஓரளவுக்கு வேறுபட்ட அடர்த்திகளைக் கொண்ட பொருட்கள் (நீர்த்த ஆல்கஹாலைக் கொண்ட கண்ணாடி கோளங்கள்) விழவும் எழவும் கூடும் என்றும் கலிலியோ கண்டறிந்தார். இதுவே தற்காலத்தில் பயன்படுத்தப்படும் கலிலியோ வெப்பமானிகளின் தத்துவமாகும். (படத்தில் காட்டப்பட்டுள்ளது). இன்று அந்த வெப்பமானிகள் வெப்பநிலை அளவுகோலைக் கொண்டு அளவுதிருத்தம் செய்யப்பட்டுள்ளன.
தெர்மோஸ்கோப்பின் முதல் தெளிவான வரைபடம் 1617 ஆம் ஆண்டில் கியூஸெப்பி பியான்கனி என்பவரால் வெளியிடப்பட்டது: அளவீடுகளைக் கொண்டு, வெப்பமானியாக செயல்படக்கூடிய ஒன்று 1638 ஆம் ஆண்டில் ராபர்ட் ஃபளட் என்பவரால் வெளியிடப்பட்டது. இது ஒரு செங்குத்துக் குழாய், அதன் மேல்பகுதியில் ஒரு குமிழி காணப்பட்டது மற்றும் அடிப்பகுதி நீரில் அமிழ்ந்து இருந்தது. குழாயில் இருந்த நீரின் அளவானது, அதிலுள்ள காற்றின் விரிவு மற்றும் சுருக்கத்தால் கட்டுப்படுத்தப்பட்டது, எனவே இதனை நாம் காற்று வெப்பமானி என்று அழைக்கிறோம்.[4]
ஒரு தெர்மோஸ்கோப்பில், அளவீடுகளைக் குறித்த முதல் மனிதராக ஃப்ராசெஸ்கோ சாக்ரெடோ[5] அல்லது சான்டாரியோ சான்டாரியோ[6] என்பவரால் 1611 முதல் 1613 க்கு இடைப்பட்ட காலத்தில் உருவாக்கப்பட்டதாக கூறப்படுகிறது.
வெப்பமானி என்ற சொல், (அதனுடைய பிரெஞ்சு மொழி வடிவத்தில்) 1624 ஆம் ஆண்டில், ஜே. லூரெக்கான் என்பவர் எழுதிய லா ரிகிரியேஷன் மேத்தமடிக் (La Récréation Mathématique) என்பதில் குறிப்பிடப்பட்டது, இதில் அவர் 8 பாகைகள் கொண்ட ஒரு அளவீட்டை விவரிக்கிறார்.[7]
மேற்குறிப்பிட்ட சாதனங்கள் காற்றழுத்தமானிகளாகவும் இருந்தன, அதாவது காற்றழுத்தத்தாலும் மாறுபாடு அடைந்த காரணத்தால் ஒரு பின்னடைவைச் சந்தித்தன. 1654 ஆம் ஆண்டுவாக்கில், டஸ்கனி இராச்சியத்தின் மன்னர் இரண்டாம் ஃபெர்டினாண்டோ டி' மெடிக்கி என்பவர், முதன்முதலாக, மூடப்பட்ட குழாயில் ஒருபகுதி ஆல்ககாலால் நிரப்பியிருந்தார், அதில் ஒரு குமிழியும் தண்டு பகுதியும் இருந்தன, இதுவே முதன்முதலான நவீன வடிவ வெப்பமானி ஆகும். இந்தக் கருவி காற்றழுத்தத்தை முற்றிலும் சாராமல், வெறும் நீர்மத்தின் விரிவாக்கத்தின் அடிப்படையில் அமைந்த முதல் கருவியாகும் [7] பல பிற விஞ்ஞானிகளும், பல்வேறு வகையான நீர்மங்கள் மற்றும் வடிவமைப்புகளைப் பயன்படுத்தி வெப்பமானிகளை சோதித்து வந்தனர்.
ஆனாலும், ஒவ்வொரு கண்டுபிடிப்பாளருடைய வெப்பமானிகளும் வேறுபட்டதாக இருந்தன—எந்தவொரு தரநிலைப்படுத்தப்பட்ட அளவீடும் இல்லை. 1665 ஆம் ஆண்டில், கிறிஸ்டியன் ஹைகென்ஸ் என்பவர் நீரின் உருகுநிலை மற்றும் கொதிநிலை ஆகியவை மாறாதவை என்று பரிந்துரைத்தார், மேலும் 1694 ஆம் ஆண்டில் கார்லோ ரெனால்டினி என்பவர் உலகளாவிய அளவுகோல்களில் அவற்றை நிலையான புள்ளிகளாக பயன்படுத்துவது குறித்து பரிந்துரைத்தார். 1701 ஆம் ஆண்டில், ஐசக் நியூட்டன் பனிக்கட்டியின் உருகுநிலைக்கும் மனித உடல் வெப்பநிலைக்கும் இடையே 12 டிகிரி அளவீடு ஒன்றைப் பரிந்துரைத்தார். 1724 ஆம் ஆண்டில் இறுதியாக, டேனியல் கேப்ரியல் பாரன்ஹீட் என்பவர் ஒரு வெப்பநிலை அளவீட்டை உருவாக்கினார், இது தற்காலத்திலும் (ஓரளவுக்கு மாற்றப்பட்டு) அவருடைய பெயரைத் தாங்கியுள்ளது. அவர் முதன்முறையாக பாதரசத்தைப் (பாதரசத்தின் விரிவடைதல் கெழு மிகவும் அதிகம்) பயன்படுத்தி வெப்பமானிகளை உருவாக்கிய காரணத்தால் அவரால் இதைச் செய்ய முடிந்தது. இந்த வெப்பமானிகள் அதிக துல்லிய அளவீட்டையும், மீண்டும் அதே அளவீட்டை அதே வெப்பநிலையில் காண்பிக்கும் தன்மையும் கொண்டிருந்ததால் பொதுவான பயன்பாட்டில் அதிக அளவிற்கு வந்தன. 1742 ஆம் ஆண்டில், ஆண்டர்ஸ் செல்சியஸ் என்பவர், நீரின் கொதிநிலையில் பூச்சிய அளவீட்டையும் அதனுடைய உருகுநிலையில் 100 டிகிரிகள் அளவீட்டையும் கொண்டிருக்கும் ஒரு அளவீட்டு முறையை அறிமுகப்படுத்தினார்,[8] தற்காலத்தில் அவருடைய பெயரைக் கொண்டு வழங்கப்படும் அளவீட்டில் இந்த முறை தலைகீழாகவே பயன்படுத்தப்படுகிறது.[9]
1866 ஆம் ஆண்டில், சர் தாமஸ் கிளிஃபோர்டு ஆல்பட் என்பவர் மருத்துவ வெப்பமானியைக் கண்டறிந்தார், அது உடல் வெப்பநிலையை ஐந்து நிமிடத்தில் அளவிட்டது.[10] 1999 ஆம் ஆண்டில், எக்ஸெர்கென் கார்ப்பரேஷனைச் சேர்ந்த, டாக்டர். பிரான்செஸ்கோ பொம்பேய் என்பவர் உலகின் முதல் டெம்போரல் ஆர்டரி வெப்பமானியை அறிமுகப்படுத்தினார், இது ஆபத்தற்ற வழியில் நெற்றியிலிருந்து, 2 விநாடிகளுக்கு வெப்பநிலையை அளவிட்டது, இது மருத்துவ ரீதியில் துல்லியமான உடல் வெப்பநிலையை வழங்கியது.[11][12]
Remove ads
அளவுத்திருத்தம்
வெப்பமானிகளை மற்றொரு சான்றளிக்கப்பட்ட வெப்பமானியுடன் ஒப்பிடுவதன் மூலமோ அல்லது வெப்பநிலை அளவீட்டில் தெரிந்த நிலையான புள்ளிகளுடன் ஒப்பிடுவதன் மூலமோ அளவு திருத்தம் செய்ய முடியும். சிறப்பாக அறியப்பட்ட நிலைத்த புள்ளிகளாவன, தூய நீரின் உருகுதல் மற்றும் கொதிநிலைகளாகும். (நீரின் கொதிநிலை அழுத்தத்துடன் வேறுபடக்கூடியது என்பதை நினைவில் கொள்ளவும், எனவே இதுவும் கட்டுப்பாட்டில் வைக்கப்பட வேண்டும்.)
கண்ணாடியில் நீர்மம் அல்லது உலோகத்தில் நீர்மம் சேர்ந்து அமைந்த பாரம்பரியமான அளவீட்டு முறையில் மூன்று நிலைகள் இருக்கின்றன:
- உணரும் பகுதியை தூய பனிக்கட்டி மற்றும் நீர் கலந்த கலவையில் அமிழ்த்தி வைக்கவும். அவை வெப்பச்சமநிலைக்கு வரும்போது காண்பிக்கப்படும் புள்ளியைக் குறித்துக் கொள்ளவும்.
- உணரும் பகுதியை நீராவி நிறைந்த இடத்தில் வைக்கவும், மீண்டும் காண்பிக்கப்படும் புள்ளியைக் குறித்துக் கொள்ளவும்.
- பயன்படுத்த வேண்டிய அளவீட்டுக்கு ஏற்ப இந்த இரண்டு குறியீடுகளுக்கு இடைப்பட்ட பகுதியை சமமான பகுதிகளாக பிரித்துக் கொள்ளவும்.
முன்னாட்களில் பயன்படுத்தப்பட்ட பிற நிலைத்த புள்ளிகளாவன (ஆரோக்கியமான் ஆணின்) உடல் வெப்பநிலை, இதனை முதலில் பாரன்ஹீட் உச்ச நிலைத்த புள்ளியாக பயன்படுத்தினார் (96 °F (36 °C) என்பது 12 ஆல் வகுக்க முடிந்த ஒரு எண் ஆகும்) மேலும் குறைந்தபட்ச வெப்பநிலையாக உப்பு மற்றும் பனிக்கட்டியின் கலவையிலிருந்து அளவிடப்பட்ட வெப்பநிலை ஆகும். இதுவே 0 °F (−18 °C) இன் வரையறையாகும்.[13] (ஃபிர்கோரிஃபிக் கலவைக்கான எடுத்துக்காட்டு இதுவாகும்). உடல் வெப்பநிலை மாறிக் கொண்டே இருக்கக்கூடியது என்பதால், பாரன்ஹீட் அளவுகோலில் பின்னாளில், உச்ச நிலைத்த புள்ளியாக, நீரின் கொதிநிலையான 212 °F (100 °C) என்பதாக அமைத்துக் கொண்டார்.[14]
இவை தற்போது, 1990 சர்வதேச வெப்பநிலை அளவீட்டில் வரையறுத்த புள்ளிகளால் பதிலீடு செய்யப்பட்டுள்ளன, ஆனாலும் நீரின் கொதிநிலையே அதிக அளவில் மும்மை புள்ளியை விடவும் அதிகமாக பயன்படுத்தப்படுகிறது, ஏனெனில் இரண்டாவது நிர்வகிக்க சிக்கலானதும், முக்கியமான தரநிலை அளவீடுகளுக்கு மட்டுமே என்ற வரம்புடையதாகவும் இருப்பதே இதன் காரணமாகும். தற்காலத்தில், உற்பத்தியாளர்கள், பெரும்பாலும் தெர்மோஸ்டாட் தொகுப்பு அல்லது கனமான தொகுப்பு ஒன்றைப் பயன்படுத்துகின்றனர், இதில் அளவுதிருத்தம் செய்யப்படும் வெப்பமானியுடன் ஒப்பிடும்போது, வெப்பநிலையானது மாறிலியாக வைக்கப்படும். அளவீடு திருத்தம் செய்யப்பட வேண்டிய பிற வெப்பமானிகளும், அதே தொகுப்பில் வைக்கப்பட்டு, சமநிலைக்கு வரவைக்கப்படுகின்றன, பின்னர் அளவீடுகள் குறிக்கப்படுகின்றன அல்லது சாதனத்தின் அளவீடிலிருந்து ஏதேனும் விலகல் இருந்தால் அது குறித்துக் கொள்ளப்படுகிறது.[15] பல பெரும்பாலான நவீன சாதனங்களுக்கு, அளவீடு திருத்தம் என்பது, ஒரு மின்னணு சமிக்ஞையை வெப்பநிலையாக மாற்றுவதற்கு தேவையான மதிப்பு ஒன்றைக் குறிப்பிடுவதே ஆகும்.
Remove ads
துல்லியம் வழுவாமை, துல்லியத்தன்மை மற்றும் மீண்டும் ஒரே முடிவைத் தரும் திறன்

ஒரு வெப்பமானியின் துல்லியம் வழுவாமை அல்லது தெளிவுத்திறன் என்பது ஒரு பாகைக்கு எந்த அளவிற்கு நெருக்கமான அளவீட்டை வெப்பமானியால் செய்ய முடிகிறது என்று குறிப்பிடுவதே ஆகும். அதிக வெப்பநிலை பணிகளில், 10 °C அல்லது அதை விட அதிக நெருக்கத்தில் மட்டுமே வெப்பநிலையை அளவிடுதல் சாத்தியமாகும். மருத்துவ வெப்பமானிகள் மற்றும் பல மின்னணு வெப்பமானிகள் பொதுவாக 0.1 °C அளவிற்கு துல்லியமாக அளவுகள் செய்யக்கூடியவை. சிறப்பியல்புக் கருவிகள், ஒரு பாகையின் ஆயிரத்தில் ஒரு பங்கைக் கூட துல்லியமாக அளவிடக்கூடியவையாக இருக்கின்றன. ஆனாலும், இந்த துல்லியம் மட்டுமே அளவீடு உண்மையானது என்பதை உறுதிப்படுத்தாது.
அறியப்பட்ட நிலைத்த புள்ளிகளால், (எ.கா. 0 மற்றும் 100 °C) அளவு திருத்தம் செய்யப்பட்ட வெப்பமானிகள் அந்த புள்ளிகளில் துல்லியமாக காணப்படும் (அதாவது உண்மையான அளவீட்டைக் காண்பிக்கும்.) பெரும்பாலான வெப்பமானிகள், உண்மையில் நிலையான கொள்ளளவு உடைய வாயு வெப்பமானிகளைக் கொண்டு அளவுதிருத்தம் செய்யப்பட்டுள்ளன.[மேற்கோள் தேவை] இதற்கிடையே, ஒரு இடைச்செருகல் செயல்முறை பயன்படுத்தப்படுகிறது, பெரும்பாலும் இது ஒரு நேரிய செயல்முறையாக இருக்கிறது.[15] இது, நிலைத்த புள்ளிகளை விட அதிகம் விலகியுள்ள புள்ளிகளில் வெப்பமானிகளுக்கு இடையில் கணிசமான அளவு வேறுபாட்டைத் தரக்கூடும். எடுத்துக்காட்டாக, கண்ணாடி வெப்பமானியில் உள்ள பாதரசத்தின் விரிவடைதலானது, ஒரு பிளாட்டின வெப்பமானியின் மின் தடையிலிருந்து வேறுபடக்கூடியது, எனவே இவை 50 °C அளவில் வேறுபடக்கூடியன.[16] சாதனத்தின் அமைப்பில் காணப்படும் குறைபாடுகள் பிற காரணங்களில் அடங்கும், எடுத்துக்காட்டாக, கண்ணாடியில் நீர்மத்தைக் கொண்ட வெப்பமானியில், துளையின் விட்டம் வெவ்வேறாக காணப்படுகிறது.[16]
பல காரணங்களுக்காக, மீண்டும் ஒரே முடிவைப் பெறுதல் என்பது முக்கியமானதாகிறது. அதாவது, ஒரே வெப்பநிலையில் ஒரு வெப்பமானி வெவ்வேறு நேரங்களில் ஒரே அளவீட்டைத் தர வேண்டும். (அல்லது ஒரே வெப்பநிலைக்கு வெவ்வேறு வெப்பமானிகள் ஒரே அளவீட்டைத் தர வேண்டும்) மீண்டும் வெப்பநிலை அளவீட்டைக் காட்டுதல் என்பது, அறிவியல் சோதனைகள் ஒரே மாதிரியானதாகவும், தொழிற்துறை முறைகள் நிலைத்ததாகவும் இருக்கும் நேரங்களில் மட்டுமே செல்லுபடியாகும். எனவே, ஒரே வகையான வெப்பமானி ஒரே மாதிரியாக அளவு திருத்தம் செய்யப்பட்டால், அதனுடைய அளவீடுகள் ஒன்றுபோலவே இருக்கும், இவை அசல் அளவீடுடன் ஓரளவுக்கு வேறுபட்டிருந்தாலும் ஒன்று போலவே இருக்கும்.
பிற வெப்பமானிகளை தொழிற்துறை தரநிலைகளுடன் ஒப்பிட உதவக்கூடிய சான்று வெப்பமானியாக, இலக்கமுறை (டிஜிட்டல்) திரையுடனும், 0.1 °C துல்லியத்துடனும் இருக்கும் பிளாட்டினம் மின்தடை வெப்பமானியைக் குறிப்பிடலாம். இது தேசிய தரநிலைகளுடன் 5 புள்ளிகளில் (-18, 0, 40, 70, 100 °C) அளவுத் திருத்தம் செய்யப்பட்டுள்ளது மற்றும் ±0.2 °C துல்லியம் கொண்டது என்று சான்றளிக்கப்பட்டுள்ளது.[17]
பிரித்தானிய தரநிலையைப் பொறுத்தவரை, சரியாக அளவுத் திருத்தம் செய்யப்பட்டு, பயன்படுத்தப்படும், பராமரிக்கப்படும் கண்ணாடியில் நீர்மம் உள்ள வெப்பமானிகள், 0 முதல் 100 °C வெப்பநிலைகளில் ±0.01 °C துல்லியத்திற்கு அளவீட்டையும், இந்த வரம்பிற்கு வெளியே சற்று அதிகமான நிலைப்புத்தன்மை இன்மையையும் தரக்கூடும்: அதிகபட்சம் 200 வரை அல்லது குறைந்தபட்சம் -40 °C வரை ±0.05 °C வரை துல்லியத்தையும் தரும், அதிகபட்சம் 450 அல்லது குறைந்தபட்சம் -80 °C வரை ±0.2 °C துல்லியத்தையும் தரும்.[18]
Remove ads
பயன்கள்

வெப்பமானிகளுக்கு ஏராளமான பயன்பாடுகள் இருக்கின்றன. பலவகையான இயற்பியல் பண்புகளைப் பயன்படுத்தி வெப்பநிலையை அளக்கும் விதமாக வெப்பமானிகள் கட்டமைக்கப்பட்டுள்ளன. வெப்பநிலை உணர்விகள், ஏராளமான அறிவியல் மற்றும் பொறியியல் பயன்பாடுகளில் பயன்படுத்தப்படுகின்றன, குறிப்பாக அளவிடுதல் அமைப்புகளில் பயன்படுகின்றன. வெப்பநிலை அமைப்புகள், குறிப்பாக மின்னியல் அல்லது இயந்திரவியல் அமைப்புகள், அவைக் கட்டுப்படுத்தும் அமைப்பிலிருந்து பெரும்பாலும் பிரிக்க முடியாதவை (எடுத்துக்காட்டாக, ஒரு பாதரச வெப்பமானி). ஆல்கஹால் வெப்பமானிகள், அகச்சிவப்பு வெப்பமானிகள், கண்ணாடியில் பாதரச வெப்பமானிகள், பதிவெடுத்தல் வெப்பமானிகள், வெப்பமின்தடைகள் மற்றும் சிக்ஸ் வெப்பநிலைகள் ஆகியவை வெளிப்புற பயன்பாடுகளில் பயன்படுத்தப்படுகின்றன, குறிப்பாக பூமியின் வளிமண்டலம் மற்றும் பூமியின் பெருங்கடல்கள் போன்ற இடங்களில் வானிலை முன்கணிப்பு மற்றும் தட்பவெப்பவியல் ஆகிய துறைகளில் பயன்படுத்தப்படுகிறது. விமானங்கள் அதன் பறக்கும் பாதையில், ஹைட்ரோமீட்டர்களைப் பயன்படுத்தி வளிமண்டல பனியாதல் நிலைகள் உள்ளதா என்று தீர்மானிக்கின்றன, மேலும் இந்த அளவீடுகள் வெப்பநிலை முன்னறிவிப்பு மாதிரிகளைத் தொடங்க பயன்படுத்தப்படுகின்றன. குளிர்ந்த வானிலை நேரங்களில், சாலைகளில் பயன்படுத்தப்படுகின்ற வெப்பமானிகள், பனியாதல் நிலைகள் உள்ளதா என்று தீர்மானிக்க உதவுகின்றன. உட்புறங்களில், வெப்பமின்தடைகள் குளிரூட்டிகள், ஃப்ரீசர்கள், வெப்பமூட்டிகள், குளிர்சாதனப் பெட்டிகள் மற்றும் நீர் சூடேற்றிகள் ஆகிய வெப்பநிலை கட்டுப்பாட்டு அமைப்புகளில் பயன்படுத்தப்படுகின்றன.[19] கலிலியோ வெப்பமானிகள் அவற்றின் வரம்புடைய அளவீட்டு வரம்பினால் உட்புற காற்று வெப்பநிலையை அளவிட பயன்படுத்தப்படுகிறது.
இரட்டை உலோகத் தண்டைக் கொண்டை வெப்பமானிகள், வெப்பமின்னிரட்டைகள், அகச்சிவப்பு வெப்பமானிகள் மற்றும் வெப்பமின் தடைகள் ஆகியவை உணவு சமைத்தலில் குறிப்பாக, இறைச்சி சரியாக வேகவைக்கப்பட்டுள்ளதா என்று அறிய பயன்படுத்தப்படுகின்றன. உணவின் வெப்பநிலையானது மிகவும் முக்கியமானது. ஏனெனில், அது சுற்றுச்சூழலைச் சார்ந்தே இருக்கிறது, அதாவது உணவானது 5 °C (41 °F) மற்றும் 57 °C (135 °F) க்கு இடைப்பட்ட வெப்பநிலையில் நான்கு மணிநேரம் அல்லது அதிகமாக இருக்குமானால் அதில் பாக்டீரியாக்கள் உருவாகக்கூடும். இதன் விளைவாக உணவிலிருந்து தொற்று நோய்கள் ஏற்படக்கூடும்.[19] வெப்பமானிகள், மிட்டாய் உருவாக்கத்தில் பயன்படுகின்றன. கண்ணாடியில் பாதரசம்[20], அகச்சிவப்பு வெப்பமானிகள்[21], மாத்திரை வெப்பமானிகள் மற்றும் நீர்ம படிக வெப்பமானிகள் (liquid crystal thermometer) போன்ற மருத்துவ வெப்பமானிகள் நபர்களுக்கு காய்ச்சல் அல்லது வெப்பநிலை உயர்வு இருக்கிறதா என்று கண்டறிய உடல்நல கவனிப்பு துறையில் பயன்படுத்தப்படுகிறது. மீன் தொட்டிகளில் உள்ள நீரின் வெப்பநிலையைக் கண்டறியவும் நீர்ம படிக வெப்பமானிகளில் பயன்படுத்தப்படுகின்றன. ஃபைபர் பிராக் கிரேட்டிங் வெப்பநிலை உணர்விகள், அணுமின் நிலையங்களில், உலைகளின் மைய வெப்பநிலையை கண்காணிக்கவும் அணுஉலை விபத்துகள் ஏற்படாமல் தடுக்கவும் உதவுகிறது.[22]
பிற வகையான வெப்பமானிகள்
- பெக்மான் வகையீட்டு வெப்பமானி
- இரட்டை உலோக இயந்திரவியல் வெப்பமானி
- கூலூம் ப்ளாக்கோடு வெப்பமானி
- மின்தடை வெப்பமானி
- மீள்வித்தல் வெப்பமானி
- சிலிக்கான் பட்டை அகல வெப்பநிலை உணர்வி
- பாஸ்பர் தெர்மோமெட்ரி
Remove ads
மேலும் பார்க்க
- தன்னிச்சையாக செயல்படும் வானூர்தி வானிலை நிலையம்
- வெப்பநிலை மற்றும் அழுத்த அளவீடு தொழில்நுட்ப வளர்ச்சியின் கால வரிசைக்கோடு
- வெப்பநிலை மாற்றம்
- வெப்பமின் உருவாக்கி
மேற்கோள்கள்
கூடுதல் வாசிப்பு
வெளி இணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads