மிகையெண் (கணிதம்)
From Wikipedia, the free encyclopedia
Remove ads
எண்ணியல் கோட்பாட்டில் மிகையெண் (Abundant Number) என்பது ஓர் எண்ணினுடைய அனைத்து வகுத்திகளையும் கூட்டும் போது வரும் தொகை அந்த எண்ணை விட அதிகமாக இருப்பின் அதுவே அபுடன்ட் எண் எனப்படும். முழு எண் 12 என்பது முதல் அபுடன்ட் எண்(abundant number) அல்லது ஏராளமான எண்(excessive number) ஆகும்.12 ன்வகுத்திகள் 1, 2, 3, 4 மற்றும் 6 ஆகும். இத்னுடைய கூட்டுத் தொகை தொகை 16. இது 12 விட 4 அதிகம். ஆகவே தான் இதை அபுடன்ட் எண் என்று கூறுகிறோம்

கணிதத்தில் n என்ற ஒவ்வொரு நேர்ம முழு எண்ணுக்கும், அதன் காரணிகளின் (1 உட்பட) கூட்டுத்தொகை σ(n) என்று குறிக்கப்படும். அக்காரணிகளில் n ம் ஒன்றாகும். n ஐ நீக்கிவிட்டு மீதமுள்ள எல்லா காரணிகளையும் கூட்டி வரும் தொகை s(n) என்று குறிக்கப்படும். இப்பொழுது மூன்றுவித சூழ்நிலைகள் உருவாகக்கூடும்.
1. σ(n) > 2n ; இதுவே s(n) > n என்பதற்குச் சமம்.
2. σ(n) = 2n ; இதுவே s(n) = n என்பதற்குச் சமம்.
3. σ(n) < 2n ; இதுவே s(n) < n என்பதற்குச் சமம்.
முதல் சூழ்நிலையில் n ஒரு மிகையெண் என்றும் இரண்டாவது சூழ்நிலையில் n ஒரு 'நிறைவெண்' (Perfect Number)அல்லது 'செவ்விய எண்' என்றும், மூன்றாவது சூழ்நிலையில் n ஒரு 'குறைவெண்' (Deficient number) என்றும் பெயர் பெறும். இக்கட்டுரை மிகையெண் பற்றியது.
Remove ads
எடுத்துக்காட்டுகள்
- 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, .....
- s(12) = 2+3+4+6 = 15 ஆக, 12 ஒரு மிகையெண்.
- s(72) = 2+4+6+8+9+12+18+24+36 = 119. ஆக, 72 ஒரு மிகையெண்.
சிற்சில கண்ணோட்டங்கள்
- மிகச்சிறிய ஒற்றைப்படை மிகையெண் 945.
- ஒற்றைப்படையோ இரட்டைப்படையோ, மிகையெண்களுக்கு முடிவே இல்லை.
- ஒரு நிறைவெண்ணின் மடங்குகள் எல்லாம் மிகையெண்களே[1] .
- 20161 க்கு அதிகமாயுள்ள எந்த முழு எண்ணையும் இரு மிகையெண்களின் கூட்டுத்தொகையாக எழுதலாம்[2].
தொடர்புடைய கருத்துருக்கள்

ஓர் எண்ணின் தகுவகுஎண்களின் கூட்டுத்தொகையானது அந்த எண்ணுக்குச் சமமாக இருந்தால் அந்த எண் ஒரு செவ்விய எண் (எ.கா: 6, 28); ஓர் எண்ணின் தகுவகுஎண்களின் கூட்டுத்தொகையானது அந்த எண்ணைவிடச் சிறியதாக இருந்தால் அந்த எண் குறைவெண். முதன்முதலில் கணிதவியலாளர் நிக்கோமக்கசு, குறைவெண்கள், செவ்விய எண்கள், மிகையெண்கள் ஆகியவற்றை வகைப்படுத்தி வெளியிட்டார் (Introductio Arithmetica , circa 100 AD).
- n இன் மிகைமைச் சுட்டெண் = σ(n)/n.[3]
- n1, n2, ... என்ற வெவ்வேறான எண்களின் (இவை மிகையெண்களாகவோ அல்லது இல்லாமலும் இருக்கலாம்) மிகைமைச் சுட்டெண்கள் சமமாக இருந்தால் அவை நட்பார்ந்த எண்கள் எனப்படும்.
- σ(n) > kn எனக்கொண்ட மிகக்குறைந்த எண்களின் தொடர்வரிசை (ak) ஆனது மிக வேகமாக அதிகரிக்கும். இதில் a2 = 12 என்பது முதல் மிகையெண்ணாகும்.(OEIS-இல் வரிசை A134716)
- 3 ஐ விடப்பெரிய மிகைமைச் சுட்டெண்ணுடைய மிகச்சிறிய ஒற்றை முழுவெண் 1018976683725 = 33 × 52 × 72 × 11 × 13 × 17 × 19 × 23 × 29.[4]
- p = (p1, ..., pn) என்பது ஒரு பகா எண்களடங்கிய பட்டியல் எனில், p இலுள்ள பகா எண்காரணிகளை மட்டுமே கொண்டமைகின்ற ஒரு முழுவெண், மிகையெண்ணாக இருந்தால் p உம் மிகையானது எனப்படும். இக்கூற்றுக்குத் தேவையானதும் போதுமானதுமான நிபந்தனை:
- pi/(pi − 1) > 2.[5]
மேற்கோள்கள்
வெளியிணைப்புகள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads