คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง
CYP3A4
จากวิกิพีเดีย สารานุกรมเสรี
Remove ads
ไซโทโครม P450 3A4 (อังกฤษ: Cytochrome P450 3A4; ชื่อย่อ: CYP3A4; EC 1.14.13.97) เป็นเอนไซม์ชนิดหนึ่งที่มีความสำคัญยิ่งต่อร่างกายมนุษย์ ส่วนใหญ่พบได้ที่ตับและลำไส้ โดยเอนไซม์นี้จะทำหน้าที่ออกซิไดซ์โมเลกุลอินทรีย์แปลกปลอมขนาดเล็ก (ซีโนไบโอติค) เช่น สารพิษ หรือยา เพื่อให้ร่างกายสามารถกำจัดสารแปลกปลอมเหล่านี้ออกไปได้ ยารักษาโรคส่วนใหญ่มักถูกทำให้หมดฤทธิ์ได้โดยเอนไซม์ CYP3A4 แต่ในทางตรงกันข้าม กลับมียาบางชนิดที่ถูกทำให้มีฤทธิ์ในการรักษาได้ด้วยเอนไซม์นี้ อย่างไรก็ตาม สารบางอย่าง เช่น น้ำเกรปฟรูต และยาบางชนิดอาจมีฤทธิ์รบกวนการทำงานของเอนไซม์ CYP3A4 ได้ โดยผลที่เกิดขึ้นจากอันตรกิริยาระหว่างสารเหล่านี้กับเอนไซม์ CYP3A4 อาจเพิ่มหรือลดประสิทธิภาพการรักษาของยาที่จำเป็นต้องมีการเปลี่ยนแปลงโครงสร้างด้วยเอนไซม์ CYP3A4 ได้
CYP3A4 เป็นเอนไซม์ในกลุ่มออกซิไดซิงเอนไซม์ตระกูลไซโตโครม P450 ซึ่งเอนไซม์สมาชิกอื่นในกลุ่มเอนไซม์นี้ล้วนมีส่วนสำคัญยิ่งในกระบวนการเปลี่ยนแปลงยาหลายชนิดที่แตกต่างกันออกไป แต่ CYP3A4 เป็นเอนไซม์มีส่วนเกี่ยวเนื่องกับการเปลี่ยนแปลงยาได้หลากหลายชนิดมากที่สุด CYP3A4 เป็นเอนไซม์ที่เป็นสารฮีโมโปรตีนเช่นเดียวกันกับเอนไซม์อื่นในตระกูลนี้ กล่าวคือ เป็นโปรตีนที่มีกลุ่มของฮีมซึ่งมีอะตอมของธาตุเหล็กเป็นส่วนประกอบ ในมนุษย์ โปรตีน CYP3A4 จะถูกเข้ารหัสโดยยีน CYP3A4[1] ซึ่งยีนนี้เป็นส่วนหนึ่งของกลุ่มยีน cytochrome P450 บน โครโมโซมคู่ที่ 7 โลคัส 7q21.1[2]
Remove ads
หน้าที่
สรุป
มุมมอง
CYP3A4 เป็นเอนไซม์ในมหาสกุลไซโทโครม P450 ซึ่งโปรตีนในมหาสกุลนี้จัดเป็นเอนไซม์ประเภทมอนอออกซีจีเนส ซึ่งมีส่วนสำคัญในการกระตุ้นการเกิดเมแทบอลิซึมของยาต่างๆมากมาย รวมไปถึง การสังเคราะห์คอเลสเตอรอล สเตอรอยด์ และสารประกอบจำพวกไขมันต่างๆอีกหลายชนิด
การทำงานโปรตีน CYP3A4 นั้น จะทำงานได้เมื่อเคลื่อนที่ไปยังร่างแหเอนโดพลาซึมและได้รับการกระตุ้นจากกลูโคคอร์ติคอยด์และสารทางเภสัชเคมีบางชนิด โดยยาที่ใช้ในการป้องกันหรือบำบัดรักษาโรคในปัจจุบันประมาณร้อยละ 60 นั้นถูกเมแทบอลิซึมโดยกลุ่มเอนไซม์ในไซโทโครม P450 ในจำนวนนี้มากกว่าร้อยละ 50 ถูกเมแทบอลิซึมโดย CYP3A4[3] ตัวอย่างซับสเตรตของ CYP3A4 ได้แก่ พาราเซตามอล โคดีอีน ไซโคลสปอริน ไดแอซิแพม และอิริโทรมัยซิน เป็นต้น นอกจากนี้เอนไซม์นี้ยังทำหน้าที่เมแทบอไลซ์สเตอรอยด์และสารก่อมะเร็งบางชนิดได้ด้วย[4] ยาโดยส่วนมากเมื่อถูกเมแทบอไลซ์โดย CYP3A4 มักหมดฤทธิ์ลง ซึ่งจะถูกกำจัดออกจากร่างกายต่อไปทั้งทางตรงและการอาศัยตัวนำ อย่างไรก็ตาม ยาบางชนิดกลับถูกทำให้อยู่ในรูปที่ออกฤทธิ์ (active compound) เมื่อถูกเมแทบอไลซ์โดย CYP3A4 ซึ่งสารออกฤทธิ์ที่เกิดขึ้นนี้อาจเป็นประโยชน์ในการบำบัดรักษาโรค หรือเป็นพิษต่อร่างกายก็ได้ อย่างใดอย่างหนึ่ง (ตัวอย่างสารเหล่านี้ดังแสดงในตารางด้านล่าง)
นอกจากนี้ CYP3A4 ยังมีออกฤทธิ์เป็นอีพ็อกซิเนสที่ทำหน้าที่เปลี่ยนแปลงกรดอะราคิโดนิกไปเป็นกรดอีพ็อกซีไอโคซาไทรอีโนอิก (EETs) เช่น กรด (±) -8,9-, (±) -11,12-, และ (±) -14,15-อีพ็อกซีไอโคซาไทรอีโนอิก[5] ซึ่ง EET นี้มีผลต่อระบบต่างๆของร่างกายมากมาย ซึ่งรวมไปถึงการส่งเสริมการเติบโตของเซลล์มะเร็งในผู้ป่วยมะเร็งด้วย (ดูเพิ่มที่ กรดอีพ็อกซีไอโคซาไทรอีโนอิก) การศึกษาในเซลล์สายพันธุ์ของเซลล์มะเร็งที่พบในมนุษย์พบว่า CYP3A4 จะสร้างกรด (±) -14,15-อีพ็อกซีไอโคซาไทรอีโนอิกออกมา ซึ่งกรดดังกล่าวจะออกฤทธิ์กระตุ้นให้เกิดการเจริญเติบโตของเซลล์สายพันธุ์มะเร็งตัวอย่างมากขึ้นกว่าปกติ[6] ทั้งนี้ มีรายงานพบว่าไซโทโครม P450ยังแสดงฤทธิ์เป็นมอนอออกซีจีเนสของกรดไขมัน ซึ่งจะเมแทบอไลซ์กรดอะราคิโดนิกไปเป็น กรด20-ไฮดรอกซีไอโคซาเททราอีโนอิก (20-HETE)[7] โดย 20-HETE ที่เกิดขึ้นนี้ก็มีฤทธิ์ที่คล้ายคลึงกับ EET ซึ่งรวมไปถึงความสามารถในการกระตุ้นให้เกิดการเจริญเติบโตของเซลล์มะเร็ง โดยเฉพาะอย่างยิ่ง มะเร็งเต้านม (ดูเพิ่มที่ กรด 12-ไฮดรอกซีไอโคซาเททราอีโนอิก)
Remove ads
วิวัฒนาการ
เมื่อเปรียบเทียบกับยีนพาราลอกของ CYP3A4 แล้วพบว่ายีน CYP3A4 มีการแสดงออกของส่วนควบคุม (regulatory region) ที่ซับซ้อนมากกว่าเป็นอย่างมาก[8] การที่ยีน CYP3A4 มีการแสดงออกที่ซับซ้อนเพิ่มมากขึ้นนี้ทำให้ยีน CYP3A4 มีความไวต่อลิแกนด์ชนิด PXR และ CAR ทั้งจากภายในและภายนอกมากขึ้น ซึ่งต่างจากยีนทั่วไปที่จะมีความจำเพาะของการแสดงออกที่กว้างมากขึ้นได้ก็ต่อเมื่อมีความหลากหลายของชนิดยีนที่มากขึ้น[8] CYP3A4 ของชิมแปนซีและมนุษย์นั้นมีความจำเป็นอย่างยิ่งในการเมแทบอไลซ์ลิแกนด์ชนิดต่างๆ โดยการแสดงออกของยีน CYP3A4 ในชิมแปนซีนั้นมีสัดส่วนคิดเป็นเพียงร้อยละ 50 เท่านั้นเมื่อเปรียบเทียบกับมนุษย์ อย่างไรก็ตาม การวิเคราะห์จลศาสตร์ของยีน CYP3A4 ในทั้งสองสายพันธุ์เปรียบเทียบกัน พบว่าไม่มีความแตกต่างกันแต่อย่างใด แต่การทดลองในห้องปฏิบัติการพบว่า CYP3A4 ของมนุษย์กระตุ้นให้เกิดปฏิกิริยาดีเบนซิเลชันของ 7-BFC ได้มากกว่าชิมแปนซีถึง 5 เท่า ในสภาวะที่มีกรดน้ำดีลิโทคลอริคทุติยภูมิที่เป็นพิษต่อตับ[9] ความแตกต่างของการแสดงออกของยีนข้างต้นนี้ทำให้มนุษย์มีความต้านทานต่อการเกิดท่อน้ำดีตีบตันได้มากขึ้นเมื่อเปรียบเทียบกับชิมแปนซี[9]
Remove ads
การกระจายในเนื้อเยื่อ
ตัวอ่อนมนุษย์ในระยะฟีตัสนั้นจะไม่มีแสดงออกของ CYP3A4 ในเนื้อเยื่อตับ[โปรดขยายความ] หากแต่จะมีการทำงานของCYP3A7 (EC 1.14.14.1) ขึ้นมาแทน ซึ่ง CYP3A7 นี้เป็นเอนไซม์ที่มีสารซับสเตรตเช่นเดียวกันกับ CYP3A4 แต่หลังจากมารกมีอายุประมาณ 5 เดือน จะมีการแสดงออกของ CYP3A4 ประมาณร้อยละ 40 และเพิ่มเป็นร้อยละ 72 เมื่อมีอายุ 12 เดือน[10][11]
ถึงแม้ว่า CYP3A4 จะเป็นเอนไซม์ที่พบได้ในเนื้อเยื่อตับเป็นหลัก แต่ก็สามารถพบเอนไซม์ดังกล่าวในอวัยวะหรือเนื้อเยื่ออื่นได้เช่นกัน โดยเอนไซม์ที่พบนอกเหนือจากบริเวณตับนี้ก็ล้วนแล้วแต่มีหน้าที่ที่เกี่ยวเนื่องกับการเมแทบอไลซ์โมเลกุลอินทรีย์แปลกปลอมเพื่อขับออกจากร่างกายทั้งสิ้น เช่น CYP3A4 ที่พบในลำไส้จะมีบทบาทสำคัญในการเปลี่ยนแปลงยาต่างๆที่ได้รับการบริหารยาโดยการรับประทาน บ่อยครั้งที่ CYP3A4 ที่พบในลำไส้นี้จะเปลี่ยนยาในรูปแบบที่เป็นโปรดรักให้อยู่ในรูปที่ออกฤทธิ์และถูกดูดซึมผ่านผนังลำไส้เล็กเข้าสู่กระแสเลือดต่อไป ตัวอย่างยาที่ถูกเปลี่ยนให้อยู่ในรูปที่ออกฤทธิ์โดยเอนไซม์ CYP3A4 ที่ลำไส้เล็ก ได้แก่ เทอร์เฟนาดีน – ยาต้านฮิสตามีนที่ตัวรับ H1
นอกจากนี้ ยังมีการจำแนกเอนไซม์ CYP3A4 ได้จากเนื้อเยื่อสมอง แต่บทบาทของเอนไซม์นี้ต่อระบบประสาทส่วนกลางนั้นยังไม่อาจทราบได้แน่ชัด[12]
กลไกการทำงาน
สรุป
มุมมอง

กลุ่มเอนไซม์ไซโทโครม P450จะทำงานร่วมกันเพื่อเปลี่ยนแปลงโครงสร้างของโมเลกุลแปลกปลอมโดยใช้ลิแกนด์ที่แตกต่างกันออกไปในการเกิดปฏิกิริยา ด้วยการที่เอนไซม์เหล่านี้มีตำแหน่งกัมมันต์ขนาดใหญ่และมีความสามารถในการเข้าจับกับซับสเตรตได้มากกว่า 1 ชนิดในเวลาเดียวกัน ทำให้การเมแทบอไลซ์สารเคมีทั้งที่มีแหล่งที่มาจากภายนอกและภายในร่างกายของเอนไซม์เหล่านี้มีความซับซ้อนเป็นอย่างมาก ซึ่งรวมไปถึงการเกิดไฮดรอกซิเลชัน, อีพ็อกซิเดชันของโอเลฟิน (olefin), การเกิดออกซิเดชันของสารประกอบแอโรมาติด สารประกอบอัลดีไฮด์และเฮเทอโรอะตอม , การเกิดปฏิกิริยา N- และ O- ดีอัลคิเลชัน, ปฏิกิริยาดีไฮโดรจีเนชัน และการทำงานของเอนไซม์แอโรมาเทส[13][14]
การเกิดไฮดรอกซิเลชันของพันธะ sp3 C-H เป็นหนึ่งในกลไกที่ CYP3A4 (และไซโทโครม P450 ออกซีจีเนสอื่น) เข้าทำปฏิกิริยากับลิแกนด์[15] แต่โดยส่วนมากแล้ว หลังการเกิดไฮดรอกซิเลชันบางครั้ง จะเกิดปฏิกิริยาดีไฮโดรจีเนชันตามมาภายหลัง ทำให้สารเมแทบอไลท์ที่ได้มีความซับซ้อนมากยิ่งขึ้น[14] ตัวอย่างสารที่เกิดเมแทบอลิซึมด้วย CYP3A4 มากกว่า 1 ปฏิกิริยา ได้แก่ ทาม็อกซิเฟน ซึ่งเมื่อเกิดไฮดรอกซิเลชันแล้วจะได้สารเมแทบอไลต์แรกเป็น 4-ไฮดรอกซี-ทาม็อกซิเฟน จากนั้นจะถูกดีไฮโดรจีเนตจนได้เป็นสารเมแทบอไลต์ชนิดที่ 2 คือ 4-ไฮดรอกซี-ทาม็อกซิเฟน ควิโนนมีไทด์ (4-hydroxy-tamoxifen quinone methide)[14] โดยกลไกที่คาดว่าเป็นกลไกการเกิดไฮดรอกซิเลชันของเอนไซม์ในไซโทโครม P450 ได้แก่ cage-controlled radical method ("oxygen rebound") และ concerted mechanism ซึ่งไม่ต้องอาศัยสารอนุมูลมัธยันตร์ (radical intermediate) ในการเกิดปฏิกิริยา แต่สามารถเข้าเมแทบอไลซ์ซับสเตรตได้อย่างรวดเร็วผ่านสารประกอบพวก "radical clock"[15]
Remove ads
ความผันแปรในกลุ่มประชากร
การศึกษาพบว่า มีซิงเกิลนิวคลีโอไทด์โพลีมอร์ฟิซึมมากกว่า 28 SNPs ในยีนของ CYP3A4 แต่อัลลีลเหล่านี้ไม่ได้ถูกแปรรหัสออกมาจนนำสู่การเกิดความแปรผันทางพันธุกรรมระหว่างบุคคลได้จนถึงระดับที่มีนัยสำคัญ โดยคาดว่าความผันแปรนี้เป็นผลมาจากการเหนี่ยวนำ CYP3A4 ด้วยสารซับสเตรต นอกจากนี้ยังมีรายงานว่าอัลลีลของ CYP3A4 อย่าง CYP3A4*6 (A17776 insertion) และ CYP3A4*17 (F189S) นั้นมีหน้าที่เพียงเล็กน้อยเท่านั้นเมื่อเปรียบเทียบกับอัลลีลชนิด wild-type โดย SNPs ทั้งสองนี้จะทำให้ความสามารถในการเร่งการเกิดปฏิกิริยาเคมีกับลิแกนด์ต่างๆของเอนไซม์ CYP3A4 ลดน้อยลง โดยเฉพาะอย่างย่ิ่ง เทสโทสเตอโรน และไนเฟดิปีน เมื่อเปรียบเทียบกับการเกิดเมแทบอลิซึมโดยอัลลีลชนิด wild-type ของลิแกนด์เหล่านั้น[16]
ความผันแปรของการทำงานของ CYP3A4 สามารถอธิบายได้โดยการทดสอบแบบไม่รุกล้ำที่เรียกว่า erythromycin breath test (ERMBT) ซึ่งการทดสอบนี้จะประมาณการการทำหน้าที่ของ CYP3A4 ในมนุษย์ (in vivo) โดยวัดจากปริมาณคาร์บอนไดออกไซด์ที่มีการติดป้ายกัมมันตรังสีจากลมหายใจออก หลังจากได้รับการบริหาร (14C-N-methyl)-erythromycin ด้วยการฉีดเข้าหลอดเลือดดำ[17]
Remove ads
อันตรกิริยา
สรุป
มุมมอง
น้ำเกรปฟรูต

ช่วงปี ค.ศ. 1998 นักวิจัยหลายคนค้นพบว่า น้ำเกรปฟรูตมีผลยับยั้งการทำงานของเอนไซม์ CYP3A4 อย่างแรง ซึ่งส่งผลกระทบต่อการเมแทบอลิซึมยาต่างๆหลายชนิด โดยการยับยั้งการทำงานของเอนไซม์นี้ทำให้ชีวปริมาณออกฤทธิ์ของยาเหล่านั้นเพิ่มสูงขึ้นเป็นอย่างมาก[18][19][20][21][22] ในบางกรณี เช่น ผู้ที่อยู่ระหว่างการใช้ยาแอสเทมมีโซล หรือเทอร์เฟนาดีน การเกิดอันตรกิริยาระหว่างยาเหล่านี้กับน้ำเกรปฟรูตอาจนำไปสู่อันตรายถึงแก่ชีวิตได้[19] ทั้งนี้ ผลของน้ำเกรปฟรูตต่อการดูดซึมยานั้นถูกค้นพบเป็นครั้งแรกเมื่อปี ค.ศ. 1989 และมีรายงานการเกิดอันตรกิริยาระหว่างยากับน้ำเกรปฟรูตปรากฏเป็นครั้งแรกในเดอะแลนซิตเมื่อ ค.ศ. 1991 ซึ่งเป็นการเกิดอันตรกิริยากับฟิโลดิปีนและไนเฟดิปีน และยังถือเป็นรายงานทางคลินิกรายงานแรกที่ค้นพบการเกิดอันตรกิริยาระหว่างยากับอาหาร โดยผลจากการยับยั้ง CYP3A4 ของน้ำเกรปฟรูตจะอยู่ได้นานประมาณ 3–7 วันหลังการรับประทาน และการเกิดอันตรกิริยาระหว่างยากับน้ำเกรปฟรูตจะเกิดขึ้นได้รุนแรงมากที่สุดเมื่อดื่มน้ำเกรปฟรูตหลังจากการบริหารยาไปแล้วประมาณหนึ่งชั่วโมง[23]
นอกจากเกรปฟรูตแล้ว ยังมีผลไม้อีกหลายชนิดที่ก่อให้เกิดผลไปในทิศทางนี้ อาทิ ลูกยอ (Morinda citrifolia) และน้ำทับทิม ซึ่งมีการนำมาผลิตเป็นผลิตภัณฑ์เสริมอาหาร หรือน้ำผลไม้ ก็มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ CYP3A4 ได้เช่นกัน[24][25]
สารเหนี่ยวนำ
การทำงานของ CYP3A4 สามารถถูกเหนี่ยวนำให้เพิ่มมากขึ้นได้โดยลิแกนด์หลายชนิด โดยลิแกนด์เหล่านี้จะเข้าจับกับตัวรับเพรกแนนเอกซ์ (PXR) สารประกอบเชิงซ้อน PXR ที่ได้รับการประตุ้นนี้จะเข้าจับตัวรับเรตินอยด์เอกซ์ (RXR) เพื่อสร้างสารเฮเทอโรไดเมอร์ (heterodimer) ที่จะเข้าจับกับส่วน XREM ซึ่งเป็นส่วนควบคุม (regulatory region) ของยีน CYP3A4 และการเข้าจับนี้เป็นผลทำให้เกิดปฏิกิริยากับส่วนโปรโมเตอร์ด้านใกล้ (proximal promoter) ของยีน ซึ่งจะทำให้เกิดการถอดรหัสและการแสดงออกของ CYP3A4 มากขึ้น กล่าวโดยสรุปคือ การกระตุ้นสารเฮเทอโรไดเมอร์ PXR/RXR จะทำให้มีการถอดรหัสของส่วนโปรโมเตอร์ด้านใกล้และยีนของ CYP3A4 เพิ่มมากขึ้นกว่าปกติ ทั้งนี้ลิแกนด์เหนี่ยวนำจะเข้าจับกับได้มากขึ้นก็ต่อเมื่อมีการนำเสนอของลิแกนด์ CYP3A4 เช่น ในกรณีการนำเสนอของอะฟลาทอกซิน B1, M1, และ G1 แต่โดยแท้จริงแล้ว การที่เอนไซม์ CYP3A4 มีขนาดใหญ่และมีตำแหน่งกัมมันต์ที่บิดไปมาได้ ทำให้มีความเป็นไปได้ว่าเอนไซม์นี้จะสามารถเข้าจับกับลิแกนด์ต่างๆได้มากกว่าหนึ่งชนิดในเวลาเดียวกัน ส่งผลให้มีความเสี่ยงที่จะเกิดอาการไม่พึงประสงค์ที่มีอันตรายร้ายแรงได้[26]
การเหนี่ยวนำการทำงานของ CYP3A4 ในมนุษย์นั้นมีความแตกต่างกับขึ้นตามเพศสภาพ โดยมีหลักฐานเชิงประจักษ์ที่พบว่า ในเพศหญิงจะมีอัตราการกำจัดยาที่เป็นซับสเตรตของ CYP3A4 ที่มากกว่าเพศชายไม่ว่าในช่วงน้ำหนักตัวใดๆ นอกจากนี้การศึกษาของ Wolbold และคณะที่ดำเนินการใน ค.ศ. 2003 พบว่า ระดับ CYP3A4 เฉลี่ยที่วัดได้จากตัวอย่างเนื้อเยื่อตับที่ผ่าตัดออกมาจากเพศหญิงนั้นมีค่าสูงกว่าที่วัดได้ในเพศชายประมาณร้อยละ 129 รวมไปถึงผลการเปรียบเทียบระดับเอ็มอาร์เอ็นเอของ CYP3A4 ในทั้งสองเพศก็มีสัดส่วนไปในทิศทางเดียวกัน ซึ่งอาจเป็นข้อมูลที่พอจะช่วยให้อนุมานได้ว่า กระบวนการก่อนการแปรรหัสของยีน CYP3A4 เป็นสาเหตุที่ทำให้เพศหญิงมีระดับ CYP3A4 ที่มากกว่าเพศชาย อย่างไรก็ดี สาเหตุที่แท้จริงที่ทำให้เกิดการเพิ่มระดับของเอนไซม์นี้ในเพศหญิงนั้นยังไม่อาจทราบได้แน่ชัดมากเท่าใดนัก แต่ก็มีการศึกษาอีกหลายการศึกษาที่พยายามจะอธิบายกลไกอื่นที่สัมพันธ์กับการเกิดปรากฏการณ์ในทำนองเดียวกันที่ส่งผลให้เกิดความแตกต่างในการกำจัดยาออกจากร่างกายระหว่างเพศชายและเพศหญิง (เช่น ปรากฏการณ์ที่มีการเพิ่มขึ้นของ CYP3A5 หรือ CYP3A7 เพื่อชดเชยการที่มี CYP3A4 ลดต่ำลง)[27]
ซับสเตรตที่กระตุ้นการทำงานของ CYP3A4 ในสิ่งมีชีวิตชนิดต่างๆ นั้นมีความหลากหลายแตกต่างกันไปในแต่ละสายพันธุ์ โดยลิแกนด์บางชนิดที่กระตุ้น PXR ของมนุษย์นั้นจะส่งผลให้มีการถอดรหัสของ CYP3A4 เพิ่มมากขึ้น แต่อาจไม่มีผลต่อกระบวนการดังกล่าวในสัตว์ชนิดอื่น ตัวอย่างเช่น PXR ของหนูจะไม่ถูกกระตุ้นด้วยไรแฟมพิซิน ในทำนองเดียวกัน PXR ของมนุษย์จะไม่ถูกเหนี่ยวนำโดย pregnenalone 16α-carbonitrile เหมือนที่พบในหนู[28] เพื่อให้การศึกษาการเหนี่ยวนำการทำงานของเอนไซม์โดยลิแกนด์ในห้องปฏิบัติการเป็นไปได้โดยง่าย จะมีการนำยีนของหนูมาทำการตกแต่งด้วยยีนทรานส์เพื่อให้ผลิต null/human CYP3A4 และ PXR อย่างไรก็ตาม ถึงแม้ว่าการดำเนินการดังกล่าวจะประสบผลสำเร็จในการเหนี่ยวนำให้มีการแสดงออกของเอนไซม์ humanized hCYP3A4 ในทางเดินของหนูได้สำเร็จ แต่ก็พบว่าระดับของ hCYP3A4 ในเนื้อเยื่อตับของหนูทดลองนั้นอยู่ในระดับที่ค่อนข้างต่ำ[28] ซึ่งคาดว่าเป็นผลมาจากการควบคุมระดับ CYP3A4 โดยการส่งต่อสัญญาณระดับเซลล์ (signal transduction) ของโกรทฮอร์โมน [28] นอกจากจะมีการใช้การศึกษารูปแบบดังกล่าวในมนุษย์ (in vivo) แล้ว ยังมีการใช้หนู CYP3A4 ที่ได้รับการตัดแต่งพันธุกรรมให้ผลิต humanized (hCYP3A4) เพื่อศึกษาถึงระดับการทำงานที่แตกต่างกันของ CYP3A4 ในเพศชายและหญิงอีกด้วย[28]
นอกจากนี้ยังพบว่าระดับการทำงานของ CYP3A4 มีความสัมพันธ์กับปัจจัยด้านอาหารและสิ่งแวดล้อมด้วย เช่น ระยะเวลาที่สัมผัสกับสารซีโนไบโอติค เป็นต้น[29] และเนื่องจากเอนไซม์นี้มีอยู่เป็นปริมาณมากในเซลล์เยื่อบุผนังลำไส้เล็ก ทำให้เอนไซม์นี้มีความไวต่อการอดอาหารเป็นอย่างมาก นอกจากนี้ ในสภาวะที่ร่างกายมีการป้องกันตัวจากการเกิดอาการไม่พึงประสงค์จากยาก็จะมีการแสดงออกของ CYP3A4 ที่เพิ่มมากขึ้นด้วย การศึกษาสัตว์สายพันธุ์อื่น อย่างปลา Fathead minnow พบว่าปลาเพศเมียที่ไม่ได้รับอาหารจะมีการแสดงออกของ PXR และ CYP3A4 ที่มากขึ้น และมีการแสดงให้เห็นถึงการตอบสนองที่มากขึ้นต่อสารซีโนไบโอติคหลังจากที่อดอาหารเป็นระยะเวลานานหลายวัน[29] จากผลการศึกษาในสัตว์ทดลองนี้ ทำให้เห็นถึงความแตกต่างโดยธรรมชาติในการกระตุ้นการทำงานของเอนไซม์ CYP3A4 ส่งผลให้ผู้วิจัยสามารถคาดการณ์ถึงการการเมแทบอลิซึมของยาและการเกิดอาการไม่พึงประสงค์จากยาดังกล่าวในมนุษย์ผ่านการศึกษาการทำงานของ CYP3A4 ได้ดีขึ้น
Remove ads
การหมุนเวียน
มีการคาดการณ์กันไว้ว่าอัตราการหมุนเวียนของ CYP3A4 ในอวัยวะต่างๆ ของมนุษย์นั้นมีความแตกต่างกันอย่างมาก สำหรับ CYP3A4 ในเนื้อเยื่อตับนั้น เมื่อทำการประมาณผลลัพธ์ด้วยวิธี in cncnx พบว่าโดยส่วนใหญ่แล้วเอนไซม์ดังกล่าวมีครึ่งชีวิตระหว่าง 70–140 ชั่วโมง ขณะที่การศึกษาในหลอดลดทอง (in vitro) ให้ผลลัพธ์ประมาณ 26–79 ชั่วโมง[30] การหมุนเวียนของ CYP3A4 ในทางเดินอาหารนั้นดูเหมือนว่าจะขึ้นอยู่กับอัตราการผลัดเปลี่ยนของวัฏจักรของเซลล์เอนเทอโรไซต์ ส่วนระยะเวลาที่ใช้ในการฟื้นตัวหลังจากถูกยับยั้งโดยน้ำเกรปฟรูตจะอยู่ที่ประมาณ 12–33-ชั่วโมง[30]
Remove ads
เทคโนโลยี
สรุป
มุมมอง
เนื่องจากการเข้าจับกันระหว่าง CYP3A4 กับเนื่อเยื่อมีแนวโน้มเป็นไปได้ในทางธรรมชาติของการเข้าจับกันของสารต่างๆในร่างกาย ซึ่งในอดีตเป็นการยากมากที่จะทำการศึกษาการเข้าจับกับเนื้อเยื่อของยาทั้งแบบเชิงลึกและแบบผิวเผิน และการทำให้เกิดการตกผลึกร่วมกันระหว่างเอนไซม์และสารซับสเตรตนั้นเป็นสิ่งที่เกิดขึ้นได้ยาก เนื่องจากสารซับสเตรตนั้นมักมีค่า Kd น้อย (ระหว่าง 5-150 μM) และสามารถละลายในสารละลายได้น้อย[31] วิธีการที่ประสบความสำเร็จในการแยกเอนไซม์จับอยู่กับซับสเตรตคือ การทำให้หมู่ฟังก์ชันของ monomeric CYP3A4 มีความคงตัวด้วยอนุภาคนาโนของเงินที่สร้างได้จากวิธีนาโนสเฟียร์ ลิโทกราฟี (nanosphere lithography) จากนั้นทำการวิเคราะห์ด้วยวิธี Localized surface plasmon resonance spectroscopy (LSPR)[32] การวิเคราะห์นี้สามารถนำมาใช้เป็นการทดสอบความไวสูงเพื่อตรวจวัดการเข้าจับของยา และอาจกลายเป็นส่วนสำคัญของเทคโนโลยีสมัยใหม่ที่สามารถตรวจคัดหาสารเคมีที่น่าจะมีศักยภาพในการพัฒนาเป็นยาใหม่ได้พร้อมกันในปริมาณมาก (high-throughput screening) นอกจาก LSPR แล้ว ยังพบว่า CYP3A4-Nanodisc complexe เป็นประโยชน์ในการใช้งานอื่นๆ อีกหลายด้าน ซึ่งรวมถึง โซลิดสเตทนิวเคลียร์แมกเนติกเรโซแนนซ์ (solid-state NMR), การวัดศักย์ไฟฟ้ารีด็อกซ์ (redox potentiometry), และการศึกษาจลศาสตร์ของเอนไซม์ที่สถานะคงตัว (steady-state enzyme kinetics) ด้วย[32]
Remove ads
ลิแกนด์ของ CYP3A4
สรุป
มุมมอง
ลิแกนด์ต่างๆของ CYP3A4 นั้นมีหลายชนิด โดยจะแบ่งออกเป็นซับสเตรต, สารเหนี่ยวนำ และสารยับยั้งการทำงานของ CYP3A4 รายชื่อลิแกนด์เหล่านี้ดังแสดงในตารางด้านล่าง ซึ่งในบางกลุ่มอาจมีข้อยกเว้นบางประการ ทั้งนี้ สารยับยั้งการทำงานของ CYP3A4 นั้นสามารถจำแนกออกเป็นกลุ่มย่อยได้อีก 3 กลุ่มตามความแรงของการยับยั้งเอนไซม์ดังกล่าว ได้แก่
- สารยับยั้งอย่างแรง (Strong inhibitor) คือ สารที่เมื่อยับยั้งการทำงานของเอนไซม์แล้วทำให้ค่า AUC ในกระแสเลือดของซับสเตรตเพิ่มขึ้นอย่างน้อย 5 เท่าจากปกติ หรือลดการกำจัดซับสเตรตออกจากร่างกายได้มากกว่าร้อยละ 80[33]
- สารยับยั้งปานกลาง (Moderate inhibitor) คือ สารที่เมื่อยับยั้งการทำงานของเอนไซม์แล้วทำให้ค่า AUC ในกระแสเลือดของซับสเตรตเพิ่มขึ้นอย่างน้อย 2 เท่าจากปกติ หรือลดการกำจัดซับสเตรตออกจากร่างกายได้ร้อยละ 50–80[33]
- สารยับยั้งอย่างอ่อน (Weak inhibitor) คือ สารที่เมื่อยับยั้งการทำงานของเอนไซม์แล้วทำให้ค่า AUC ในกระแสเลือดของซับสเตรตเพิ่มขึ้นอย่างน้อย 1.25 เท่าจากปกติ แต่น้อยกว่า 2 เท่า หรือลดการกำจัดซับสเตรตออกจากร่างกายได้ร้อยละ 20–50[33]
ตารางแสดงรายชื่อสารเหนี่ยวนำ สารยับยั้ง และสารซับสเตรตของเอนไซม์ CYP3A4[34]
Remove ads
แผนผังปฏิสัมพันธ์
คลิกเลือกบนชื่อสีดำของยีน, โปรตีน หรือสารเมแทบอไลต์ด้านล่าง เพื่อเชื่อมต่อไปยังบทความที่เกี่ยวเนื่อง [§ 1]
แผนภาพแสดงการเมแทบอไลซ์ไอริโนทีแคนด้วยเอนไซม์ชนิดต่างๆ แก้ไข
- สามารถแก้ไขรายละเอียดในแผนภาพปฏิสัมพันธ์นี้ได้ที่ WikiPathways: "IrinotecanPathway_WP46359".
Remove ads
ดูเพิ่ม
วิกิมีเดียคอมมอนส์มีสื่อที่เกี่ยวข้องกับ CYP3A4
- รายชื่อยาที่ได้รับผลจากน้ำเกรปฟรูต
- ไซโตโครม P450
- เมแทบอลิซึมของยา
อ้างอิง
แหล่งข้อมูลอื่น
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads