En İyi Sorular
Zaman Çizelgesi
Sohbet
Bakış Açıları

Kuyruk teorisi

Vikipedi'den, özgür ansiklopediden

Kuyruk teorisi
Remove ads

Kuyruk teorisi, bekleme sıraları ve kuyrukların matematiksel çalışmasıdır.[1] Kuyruk teorisinde, model inşa ederek kuyruğun uzunluğu ve bekleme zamanı tahmin edilebilir.[1] Kuyruk teorisi genellikle yöneylem araştırmasının bir branşı olarak kabul edilebilir. Çünkü sonuçlar genellikle bir hizmet sunmak için gerekli kaynaklar hakkında karar verirken kullanılır.

Thumb
Wachtlijn sistemli kuyruk teorisi modellemesi.

Agner Krarup Erlang tarafından ilk araştırma ve modelleme ile açıklanan Kopenhang telefon santrali olmuştur.[1] Bu fikirler eski zamanlardan beri telekomünikasyon, trafik mühendisliği, bilgisayarlar[2] ve fabrikalar, mağazalar, ofisler ve hastanelerin tasarımına dahil olmuştur.[3][4]

Remove ads

Yazım

Akademik araştırma alanında genellikle “Kuyruğa girmek” yerine “Kuyruk” ifadesi yazılır. Aslında iş alanının amiral gemisinden biri olan dergi Kuyruk Teorisi olarak adlandırmıştır.

Tek kuyruk düğümleri

Özetle
Bakış açısı

Tek kuyruk düğümleri genellikle A/S/C biçimindeki Kendall'ın gösterimini kullanarak tanımlanır. Burada A, sıraya gelenler arasındaki süreyi, S işlemlerin boyutunu ve C düğümü sunucu sayısını tanımlar.[5][6] Kuyruk teorisindeki pek çok teorem, kuyrukları Markov zincirleri olarak bilinen matematiksel sistemlere indirgenerek ispatlanabilir. Bu ilk önce Andrey Markov tarafından 1906 tarihli makalesinde açıklanmıştır.[7]

Kopenhang Telefon Santrali için çalışan Danimarkalı bir Mühendis olan Agner Krarup Erlang 1909'da kuyruk teorisi diye adlandırılan ilk belgeyi yayınladı.[8][9][10] Telefon santraline gelen telefon görüşmelerinin sayısını Poisson süreciyle modelledi ve 1917'de M/D/1 sırasını ve 1920'de M/D/k kuyruk modelini çözdü.[11] Kendall'ın gösteriminde:

  • M, Markov veya hafızasız anlamına gelir ve varışlar Poisson sürecine göre gerçekleşir.
  • D, deterministik anlamındadır ve sıraya çıkan işlerin sabit bir miktarda servis gerektirdiği anlamına gelir.
  • k, kuyruk için servis veren sunucu sayısını gösterir (k=1, 2,….). Düğüm noktasında sunuculardan daha fazla iş varsa, işler sıraya girecek ve hizmet için beklenecektir.

M/M/1 kuyruğu, Poisson sürecine göre tek bir sunucunun ulaşan işlere hizmet ettiği üssel olarak dağıtılan hizmet gereksinimlerinin bulunduğu basit bir modeldir. Bir M/G/1 sırasındaki G, genel anlamındadır ve rastgele olasılık dağılımını gösterir. M/G/1 modeli Fellix Pollaczek tarafından 1930'da çözüldü.[12] Bu çözüm Aleksandr Khinchin tarafından olasılık açısından tekrarlanan olarak adlandırılmıştır. Artık bu formül Pollaczek-Khinchine formülü olarak bilinmektedir.[11][13]

Kuyruk teorisi 1940'lardan sonra matematikçiler için ilginç bir araştırma alanı olmuştur.[13] 1953'te David George Kendall, GI/M/k sırasını[14] çözdü ve Kendall'ın gösterimi olarak bilinen sıralar için modern gösterimi sundu. 1957 yılında Pollaczek çalışmalarında GI/G/1 integral denklemini kullandı.[15] John Kigman, G/G/1 sırasındaki ortalama bekleme süresine ilişkin bir formül verdi: Kingman'ın Formülü.[16]

Matris geometrik metodu ve matris analitik metodları faz-tipi dağılmış varışlar arası ve servis edilmesine izin verilmiştir.[17]

M/G/k sırası için performans metrikleri gibi sorunlar halen açık bir sorundur.[11][13]

Remove ads

Servis disiplinleri

Düğümleri kuyruklamak için çeşitli zaman ilkeleri kullanılabilir.

İlk Giren İlk Çıkar

Bu ilke, müşterilere birer birer hizmet verildiğini ve en uzun süre bekleyen müşteriye öncelik verildiğini belirtir.[18]

İlk Giren Son Çıkar

Bu ilke, müşterilere birer birer hizmet verildiğini ve en kısa bekleme süresine sahip müşteriye önce servis edildiğini gösterir.[18] Yığın olarak da bilinir.

İşlemci Paylaşımı

Hizmet kapasitesi müşteriler arasında eşit olarak paylaşıldığını belirtir.[18]

Öncelik

Yüksek önceliği olan müşterilere ilk hizmet sunulur.[18] Öncelik kuyrukları, önlemez (görevdeki bir işin kesilemediği) ve önleyici (görevdeki bir işin daha yüksek öncelikli bir iş tarafından kesilebileceği) olmak üzere iki türden oluşur. Her iki modelde de hiçbir çalışma kaybolmaz.[19]

Kısa İş İlk

Sunulacak bir sonraki iş, en küçük boyuta sahip olan.

Öncelikli En Kısa İş

Sunulacak bir sonraki iş, orijinal en küçük boyuta sahip olan.[20]

En Kısa Kalan İşlem Süresi

Sunulacak bir sonraki iş, kalan işleme gereksinimin en kısa olanıdır.[21]

Servis Tesisi

  • Tek sunucu: Müşterilerin sırayla tek sunucudan hizmet alması.
  • Paralel sunucu: Müşterilerin sırayla birçok sunucudan hizmet alması.
  • Tandem sırası: Birçok sayaç vardır ve müşteriler nereye sıraya gireceğine karar verebilirler.

Bekleyen Müşterinin Davranışları

  • Kaçınmak: Müşteriler çok uzunsa sıraya katılmamaya karar veriyorlar.
  • Kandırmak: Müşteriler daha hızlı servis alacaklarını düşünüyorlarsa sıralar arasında geçiş yaparlar.
  • Dönmek: Müşteriler hizmet için çok uzun süre beklediyse sıradan ayrılıyorlar.

Kuyruk ağları

Özetle
Bakış açısı

Kuyruk ağları, müşterilerin yönlendirmesi yoluyla bir dizi kuyruk bağlantı sistemleridir. Bir müşteriye bir düğümde hizmet verildiğinde, başka bir düğüme katılabilir, hizmet için sıraya girebilir veya şebekeyi terk edebilir. Bir m ağında sistemin durumu m-boyutlu vektör (x1,x2,...,xm) ile tanımlanabilir. Buradaki xi, her düğümdeki müşteri sayısını temsil eder.

Bu alandaki ilk önemli sonuç, etkin bir ürün biçimi sabit dağılımın bulunduğu Jackson ağları[22][23] ve ortalama değer analizi,[24] iş hacmi ve süre gibi ortalama metriklerin hesaplanmasına izin verir.[25] Şebekedeki toplam müşteri sayısı sabit kalırsa, şebekeye kapalı bir şebeke adı verilir ve Gordon-Newell teoreminde sabit bir ürün formunda olduğu da gösterilmiştir.[26] Bu sonuç çok genel hizmet süresi, rejimleri ve müşteri yönlendirme ağına sahip bir ağında ürün biçiminde sabit bir dağıtım sergilediği gösterilen BCMP ağına[27] genişletildi. Normalleştirme sabiti 1973'te önerilen Buzen algoritması ile hesaplanabilir.[28]

Farklı sınıf müşterilerin farklı servis düğümlerinde farklı öncelik düzeyleri yaşadığı Kelly şebekeleri müşteri ağlarında araştırıldı.[29] Başka bir ağ türü de 1993 yılında Erol Gelenbe tarafından ilk kez önerilen G-ağlarıdır.[30] Bu ağlar klasik Jackson Ağı gibi üstel zaman dağılımlarını varsaymaz.

Remove ads

M/M/1 örneği

Doğum ve Ölüm Süreci

  • A/B/C
A: varış zamanı dağılımı
B: hizmet zamanı dağılımı
C: paralel sunucu sayısı
Varıl zamanı ve hizmet süresi arasındaki bir sistem üstel dağılım gösterdi. M olarak belirttik.
λ: ortalama varış zamanı
µ: tek bir hizmetin ortalama hizmete oranı
P: sistemdeki n kadar müşterinin olasılığı
n: sistemdeki müşteri sayısı
  • E, durum n'ye girme sayısı ve L, durum n'den çıkma sayısı olarak temsil etsin. . t zamanında sistem kararlı bir duruma gelmiş oluyor. Dolayısıyla varış oranı=ayrılış oranı
  • Denge denklemi
Durum 0:
Durum 1:
Durum n:
Denge denklemi ile,
Matematiksel tümevarım,
Çünkü
alıyoruz
Remove ads

Yönlendirme algoritmaları

Hizmet düğümlerinin herhangi bir zamanda aktif olabileceği bir kısıt bulunduğu ayrı zamanlı ağlarda, maksimum ağırlık çizelgeleme algoritması, her bir işin yalnızca tek bir servis düğümünü ziyaret ettiği durumlarda optimum verim sağlamak için bir hizmet politikası seçer. işlerin birden fazla düğümü ziyaret edebileceği daha genel durumlarda, geri basınç yönlendirmesi optimum verim sağlar.

Bir zamanlayıcı, daha büyük ağın özelliklerini etkileyen bir kuyruk algoritması seçmelidir.

Remove ads

Ortalama alan sınırları

Ortalama alan modelleri, kuyruk sayısı (m) sonsuzluğa geçtiği için ampirik ölçümün (çeşitli durumdaki kuyrukların oranı) sınırlayıcı davranışını göz önüne alır. Ağdaki herhangi bir sıra üzerindeki diğer sıraların etkisi, bir diferansiyel denklem ile yaklaştırılır. Deterministtik model, orijinal model ile aynı durağan dağılıma yakınsar.[31]

Sıvı sınırları

Sıvı modelleri, süreç, zaman ve mekan ölçekli olduğunda heterojen nesnelere izin vererek, limit olarak elde edilen kuyruk ağlarının sürekli deterministtik analoglarıdır. Bu ölçeklendirilmiş yörünge, sistemin kararlılığının kanıtlanmasına izin veren deterministtik bir denklemle yakınsar. Bir kuyruk ağının dengeli olabileceği, ancak dengesiz bir sıvı sınırına sahiptir.[32]

Yoğun trafik/difüzyon yaklaşımlar

Yüksek doluluk oranları olan bir sistemde (1'e yakın kullanım) Brownian hareket,[33] Ornstein-Uhlenbeck süreci veya daha genel difüzyon işlemi ile yaklaşık kuyruk uzunluğu süreci için ağır bir trafik yaklaşımı kullanır.[34] RBM'nin boyutlarının sayısı, kuyruklama düğümlerinin sayısına eşittir ve difüzyon negatif olmayan ortanca ile sınırlandırılmıştır.

Similasyon ve analiz programları

  • Java Modelling Tools,[35] a GPL suite of queueing theory tools written in Java[36]
  • Queueing Package for GNU Octave[37][38]
  • Discrete Event Simulation for Python[39][40]
  • Queueing Process Models in the Wolfram Language[41]
  • PDQ software package for R statistical computing[42]
  • SimEvents for MATLAB[43]

Kaynakça

Konuyla ilgili yayınlar

Dış bağlantılar

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads