Топ питань
Часова шкала
Чат
Перспективи

Булеве кільце

З Вікіпедії, вільної енциклопедії

Remove ads

Булеве кільце — кільце з одиницею, всі елементи якого є ідемпотентами. Тобто x2 = x для всіх елементів кільця.

Всі булеві кільця є комутативними кільцями характеристики 2, оскільки x + x = 0.

Доведення: 0 = (x + x)2 - (x + x)= x + x.

Зв'язок з булевою алгеброю

Узагальнити
Перспектива

Назва «булеве кільце» пояснюється тим, що кожне булеве кільце еквівалентне булевій алгебрі і навпаки:

  • Операції булевого кільця:
  • Операції булевої алгебри
  • Нуль кільця збігається з 0 булевої алгебри, нейтральний елемент множення збігається з 1 булевої алгебри.
  • Відображення однієї булевої алгебри в іншу є гомоморфізмом тоді і тільки тоді, коли гомоморфізмом буде відображення відповідних кілець. Тобто, категорії булевих кілець та булевих алгебр є еквівалентними.
  • Ідеал, простий ідеал, максимальний ідеал (теорія кілець) булевого кільця збігається з ідеалом простим ідеалом, максимальним ідеалом (теорія порядку) його булевої алгебри.
Remove ads

Представлення булевих алгебр

Кожна скінченна булева алгебра ізоморфна алгебрі всіх підмножин скінченної множини. Тому число елементів булевої алгебри завжди є ступенем 2.

Булеве кільце еквівалентне полю множин.

Див. також

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads